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Abstract: 

The possibility in a lab proficiency testing to assess hardness test results of a given Brinell or Vickers scale when an 
enough amount of test results is available for adjacent scales is investigated. 5 different methods are found to 
determine the assigned value and 2 different methods are found to determine the proficiency standard deviation, 
the repeatability standard deviation and the uncertainty on the assigned value. The best option depends on the 
interlaboratory testing conditions. A procedure is described to deal with the different possible options and to 
propose parameters to check the adequacy of each of them to help the choice of the most adapted one. An 
assessment of the results obtained with this procedure on CompaLab ILC results obtained during the 2017-2023 
years was performed, leading to very small differences in the scoring of participants for available scales. When the 
size of the input data is large, output scoring is even likely to be more efficient than usual one.  

1 Introduction 

Interlaboratory tests are useful to check the proficiency of laboratories. However, for Brinell and Vickers hardness 
tests as defined in [1] and [2] for which several scales (corresponding to different loads) can be used, it is easy to 
get enough participants for some of these scales (typically HBW2,5/187,5 HV1 HV5 HV10 and HV30), but quite hard 
for most of the others. On the other hand, it is well known that test results obtained with different loads are quite 
similar but not exactly equal, as a well-known “indentation size effect” (ISE) applies for low loads. Moreover, 
performing proficiency tests request not only to determine an adequate assigned value but also to determine 
adequate reference values to determine the uncertainty of the assigned value and the acceptable scatter around 
the central value. As a matter of fact, ISO 13528 [3], which is the reference for the organisation of proficiency 
testing, proposes several options including the use of a model to determine reference values, but does not describe 
accurately how to manage this option. In details, CompaLab ILC provide several types of assessments: 

 Bias, through z’ scores, that request availability of a central value (Xpt), the uncertainty of this central value 
(uXpt), the homogeneity standard deviation (σH) and an interlaboratory standard deviation (σpt); 

 Repeatability, through zr scores, that request availability of a repeatability standard deviation (σrpt); 
 Uncertainty claimed by the participant, through both a ζ score and a comparison to the standard deviation 

of reproducibility (σR), which request availability of respectively a central value (Xpt) and the uncertainty of 
this central value (uXpt), and the overall standard deviation of all results representing (σR). 

To deal with these issues, this document: 

 Explores the state of scientific knowledge about the relationship between the variations of measured Brinell 
and Vickers hardnesses according to the applied loads used to perform these measurements; 

 Process the data of results of interlaboratory comparisons performed by CompaLab during the years 2017-
2023; 

 Propose methods to determine reference values needed to perform an interlaboratory comparison (i.e. 
homogeneity standard deviation (σH), central value (Xpt), uncertainty of this central value (uXpt), 
interlaboratory standard deviation (σpt), repeatability standard deviation (σrpt)) for scales with a low number 
of participants (hereafter called output scales) from scales with a large number of participants (hereafter 
called input scales). 

For doing so, several solutions are considered: 
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 Use general models to describe the relationship between hardness measurements and loads used to 
determine them; 

 Use regression plotting to get the parameters of the models to determine the reference values for output 
scales from a certain number of input scales. 

However, several problems need to be overcome, specifically in regression plotting: 

 When a plotting of HD versus F is performed, the number of test results used to determine each HD result 
is different for each of the F values, and consequently, they should not be similarly weighted in the 
calculations of regressions; 

 The existence of outliers in the test results is a major problem and needs to be dealt with. If all of them are 
used in the plotting, how to detect outliers if the totality of test results cannot be regarded as belonging to 
the same population? 

 Participants are normally requested to produce their test results in repeatability conditions. But when 
results from several scales are used, this cannot anymore be satisfied. Deleterious statistical effects can 
appear if laboratories do not provide same number of results. This obviously occurs because they only 
provide results for scales for which they are equipped for, what differs from one lab to another; 

 Formulas for calculating the uncertainty on regression parameters exist in statistical theories. However, 
these formulas are valid only if all residues are distributed on a same Gaussian distribution. It is here not 
the case because smaller loads obviously lead to greater standard deviations; 

 When a model is likely to be relevant, how to check it as all available test results were used to build it up, 
and consequently, no more test results are available to check its validity. 

All these issues are dealt with here after. 

2 Technical backgrounds 

2.1 Symbols and abbreviated terms 

The symbols used in this document are listed in Table 1.  

Table 1. List of symbols used in this document. 

Symbol Designation and comments 

a1 and a2 Constants of the PSR model 

d Indentation size as defined in reference standards 

D Diameter of the ball in Brinell hardness test 

E Modulus of elasticity of the material 

F 
Load applied on the indenter during the hardness test 

For ease of reading, throughout the whole document, F is expressed as in scale denominations and not in Newton as 
specified in the reference standards (e.g. 10 for HV10, 187,5 for HBW 2.5/187,5). 

h Indentation depth 

HBW 
Brinell hardness test result. When it is related to a specific scale, the HBW symbol is completed with the 

related information as specified in ISO 6506-1 

HD Generic symbol for a hardness test result, that can be HBW or HV and any applied load 

HD0 Hardness measured with a load large enough to avoid any indentation size effect 
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Symbol Designation and comments 

HV 
Vickers hardness test result. When it is related to a specific scale, the HV symbol is completed with the 

related information as specified in ISO 6507-1 

k Enlargement coefficient for computing an interval of confidence from a standard uncertainty 

K Constant linking HD, F and d² in the ISO 6506-1 and ISO 6507-1 

Li Constant of the PSR model expressed as function of F and HD 

Me1 and Me2 Constants of the Meyer power law 

n Number of values 

Nix Constant of the ISE model expressed as function of F and HD 

Np Number of participants to the PT 

Ns  Number of input scales 

P1 and P2 Constants of the Meyer power law model expressed as function of F and HD 

r Correlation coefficient of a regression 

sH  Estimate of σH (i.e. computed value of σH from the data of the ILC) 

Xpt  Assigned value for the PT, as defined in ISO 13528 

ua, ub and uy  
Standard uncertainties on regression coefficients a and b and on y  

when the regression is expressed in the form of 𝑦 = 𝑎. 𝑥 + 𝑏 

uxpt  Standard uncertainty on assigned value for the PT, as defined in ISO 13528 

Za and Zua  Parameters used to check whether the slope of a linear regression is significant or not 

σH Standard deviation of homogeneity of sets of samples sent to participants for the PT 

σpt Standard deviation for the proficiency testing, as defined in ISO 13528 

σr Standard deviation of repeatability 

σrpt - sr 
Standard deviation taken as reference for the repeatability during the PT. 

σrpt (symbol chosen to be in line with ISO 13528) is also noted  
sr where it is necessary to stress out that this value is an estimate of σr 

In addition to these symbols, some acronyms are used as follows: 

 AV: assigned value; 
 IC: interval of confidence; 
 ILC: interlaboratory comparisons; 
 ISE: indentation size effect; 
 PT: proficiency tests. 

2.2 Relationship between Brinell and Vickers test results and loads used for their 
measurements 

2.2.1 Bibliography  

Introduction: 

The relationship between hardness test results and the loading used to determine them is an issue for a very long 
time. This is even more important since micro and nano indentation tests are performed to determine mechanical 
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properties of materials at microscopic scales, see [4]. Low charge hardness tests are particularly useful when very 
low quantities of material are available or to characterise coatings use to harden surfaces of mechanical pieces. 

Indentation size effect (ISE): 

In 1991, an “Indentation Size effect” (ISE) was identified by Atkinson [5], which abstract is as follows: “A recently-
proposed description of “the indentation size effect” in terms of a size-dependent error in effective load is shown 
to be accurate and to be consistent with a finite plastic hinge zone at the perimeter of the indentation. The 
implication for the theory of indentation is that strain-hardening materials do not deform in a size-independent 
geometrically-similar manner. For Vickers hardness testing of metals, the notional plastic hinge zone is a few 
micrometers wide and has little effect on the hardness values when the diagonal length of the indentation is > ∼ 

300 μm, but causes a considerable increase in apparent hardness when the indentation is smaller. The magnitude 
of the effect is governed by the strain-hardening propensity of the indented metal.” 

Li model: 

In 1993, Li & al. [6] proposed a “proportional specimen resistance” (PSR) model which deals with elastic 
deformation and frictional effects that occurs during a hardness test, as described in Equation (1): 

𝐹 = 𝑎ଵ. 𝑑 + 𝑎ଶ. 𝑑ଶ (1) 

where “F” is the applied load 
“d” is the size of the indentation 

a1 and a2 are constants. 

Equation (1) can also be expressed in the form 𝐹 𝑑ଶ⁄ = 𝑎ଵ 𝑑⁄ + 𝑎ଶ, which might be more relevant in some 
circumstances because: 

 The equation of definition of Vickers hardness provided in [2] is of the form 𝐻𝐷 = 𝑘. 𝐹/𝑑²; 
 On the other hand, the equation of definition of Brinell hardness provided in [1] is of the form 𝐻𝐷 =

𝑘. 𝐹/ ൬𝐷ଶ. ቀ1 − ඥ1 − 𝑑² 𝐷²⁄ ቁ൰ with 0,24 ≤ 𝑑 𝐷⁄ ≤ 0,6. In an ILC, all participants find test results in the 

same range (typically better than ±5%), leading to very similar d/D ratios for all of them (typically better 
than ±0,1%). Then, the equation of definition for Brinell tests can also be regarded as close to the form 
𝐻𝐷 = 𝑘. 𝐹/𝑑². In this formula, a1 characterizes the load dependence of hardness and a2 is a load 
independent constant. 

With the alternate form of Equation (1), it can then be seen that 𝐻𝐷 = 𝑘. 𝑎ଵ 𝑑⁄ + 𝑘. 𝑎ଶ. In this equation, 𝑘. 𝑎ଶ can 
be seen equal to 𝐻𝐷, the measured hardness when F is big enough to avoid any ISE, and 𝑘. 𝑎ଵ 𝑑⁄  can be seen as 
modelling the ISE.  

Nix and Gao model: 

In 1998, Nix and Gao proposed a model to quantify this ISE, see [7]. They showed that the ISE for crystalline 
materials can be accurately modelled using the concept of geometrically necessary dislocations. The model led to 
the following characteristic form for the depth dependence on the hardness:  

𝐻𝐷 𝐻𝐷⁄ = ඥ1 + ℎ∗ ℎ⁄  (2) 
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where “HD” is the hardness for a given indentation depth “h” 
“HD0” is the hardness for a hypothetical indentation of infinite depth 

“h*” is a characteristic length depending on the shape of the indenter, the shear modulus and HD0. 

This paper extensively discusses the role of strain, of strain gradient and movements of dislocations in the plastically 
deformed area of the metal while indentation takes place. 

Meyer power law: 

With regard to geometries of indentations this law was further transformed into a so-called Meyer power law, 
according to Equation (3) as follows. 

𝐹 = 𝑀𝑒ଵ. 𝑑ெమ  (3) 

where “F” is the load applied to perform the hardness test, 
“d” is the size of the indentation, 

Me1 and Me2 are constants. 

This Meyer power law can also be written in the form log(𝐹) = 𝑀𝑒ଵ. log(𝑑) + 𝑀𝑒ଶ, that is particularly useful to 
determine Me1 and Me2 constants from experimental data.  

The exponent Me2 (Meyers index, named as “n” in the publication) is a measure of the ISE effect. When Me2 = 2, 
the test result is independent to the applied load (because equations of definition of Brinell and Vickers hardnesses 
provided in [1] and [2] are of the form 𝐻𝐷 = 𝑘. 𝐹/𝑑² in which k is a constant). In most cases of micro and nano 
hardness tests, n > 2 corresponding to an ISE that increase the measured HD when the load decreases. Sometimes, 
Me2 < 2. These situations are described as “reverse ISE”, as they cannot be described by the classical models 
exposed here upper. 

Other contributions: 

In 2002, Swadener & al. [8] found out that, for a spherical indenter, hardness is not affected by depth, but increases 
with decreasing sphere radius. They based a correlation for pyramidal and spherical indenter shapes on 
geometrically necessary dislocations and work-hardening. They extended the Nix and Gao indentation size effect 
model for conical indenters to indenters of various shapes and compared to the experimental results. 

In 2003, X.J. Ren & al. [9] put in evidence a correlation between ISE and HD/E (hardness to modulus of elasticity 
ratio). 

In 2013, Budarsia [10] took advantage of the possibility of steels to produce a large panel of HD/E ratios (as HD can 
be easily controlled by heat treatments without significantly changing E) to determine Me1 and Me2 constants of 
the Meyer power law as function of HD/E. This study is also of special interest for us because it uses materials 
similar to what CompaLab uses for its proficiency tests. Budarsia found a good adequacy of his results with upper 
described models and a linear relationship between a2 of PSR model and HD/E ratio. 

In 2022, Xiaozhen Li & al. [11] discussed related effects of ISE and of some imperfections (i.e. surface defects and 
geometrical defects of the indenter) on the HD measurements. They showed that these imperfections are likely to 
cause reverse ISE occurrence even when an usual ISE is expected. 

Unsurprisingly, no article considers the impact of ISE and PSR on the performance of proficiency tests concerning 
hardness tests. As a matter of fact, the usual and easy way to organise PT on hardness tests is to request participants 
to use the same scale, with the disadvantages exposed in § 1. However, the literature enlightens our issue in several 
ways, as follows. 
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2.2.2 Contributions of scientific knowledge for the determination of assigned values (Xpt) 

The models describing the relationship between F and HD can be used to determine Xpt for an output scale from a 
series of input scales. However, these models can be more or less conflicting, depending on which phenomenon is 
predominant for the conditions in which the PT was organised. As conclusions on this issue, the following guidelines 
can be drawn: 

 When the applied load is large enough to produce indentations size larger than 0,3 mm, we can expect that 
no ISE occurs and HD  HD0. This situation is the easy one, where HD can be regarded as independent from 
F; 

 When an ISE occurs, the 2 models described respectively by Equation (1) and Equation (3) are competing. 
Determining Xpt from data of other scales imply to check which model is the best adapted to the actual 
situation; 

 Following [12], for Brinell test, the 0,102. 𝐹 𝐷ଶ⁄  ratio (where D is the diameter of the ball) can vary between 
1 and 30, leading to geometrical effects in ISE. For this reason, input scales must all be of the same 
0,102. 𝐹 𝐷ଶ⁄  ratio, and the output scale must also be of this same ratio; 

 Unfortunately, the d values are not available for the ILC organiser. Only F and HD values are available for 
the test data processing. These d values can obviously be computed from HD and F. ILC parameters could 
then be computed for them. However, it is then needed to transform them back into HD values, what is 
easy for Xpt but not easy at all for standard deviations. Consequently, Equations (1), (2) and (3) need to be 
transformed into relationship between HD and F to be useful for ILC. 

Model of Li & al.: 

Combining Equation (1) and equation 𝐻𝐷 = 𝐾. 𝐹/𝑑² (K constant) enables us to find Equation (4) as follows: 

𝐻𝐷 = 𝐻𝐷 + 𝑎ଵ 𝑑⁄ , then, by replacing d with its expression from 𝐻𝐷 = 𝐾. 𝐹/𝑑²: 

𝐻𝐷 = 𝐻𝐷 + ඥ𝑎ଵ 𝐾. 𝐹⁄ . √𝐻𝐷, which can be written in the form: 

൫√𝐻𝐷൯
ଶ

− ඥ𝑎ଵ 𝐾. 𝐹⁄ . √𝐻𝐷 − 𝐻𝐷 = 0,  

which is a polynomial of degree 2 where √𝐻𝐷 stands as the variable. 

Classical formulas of algebra can be used to find out the (relevant) root of this equation, as follows: 

𝐻𝐷 =
𝑎ଵ

4. 𝐾. 𝐹
. ቌ1 + ඨ1 +

4. 𝐻𝐷. 𝐾. 𝐹

𝑎ଵ

ቍ

ଶ

  

that can be reformulated as follows: 

𝐻𝐷 =
𝐿𝑖

𝐹
. ቌ1 + ඨ1 +

𝐻𝐷. 𝐹

𝐿𝑖
ቍ

ଶ

 

(4) 

where “HD” is the hardness test result 
“HD0” is the hardness measured with a load large enough to avoid any indentation size effect, 

“F” is the load applied to perform the hardness test,  
Li is a constant. 
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It shall be noted that the Li constant is homogeneous to HD.F, that is to say depends on the units that are used to 
express both HD and F. 

It can be seen from that: 

 When F is very large, 𝐻𝐷. 𝐹 𝐿𝑖⁄  >> 1, 𝐻𝐷 = 𝐻𝐷; 
 When F is very low, 𝐻𝐷. 𝐹 𝐿𝑖⁄  << 1, 𝐻𝐷 = 4. 𝐿𝑖 𝐹⁄ ; 

 When 𝐹 𝐿𝑖⁄ = 1 (or 𝐹 = 𝐿𝑖), 𝐻𝐷 = ൫1 + ඥ1 + 𝐻𝐷൯
ଶ
. 

Consequently, 2 ways can be explored to find out the Li constant: 

1. Determine HD0 by which any increase of F does not decrease the HD measured value. Then compute 𝐻𝐷 =

൫1 + ඥ1 + 𝐻𝐷൯
ଶ

. Then determine from the data the corresponding F value and determine Li from F value; 
2. Plot HD as a function of F for very low charges. When F is low enough, the plot becomes a straight line and 

determine Li from the equation 𝐻𝐷 = 4. 𝐿𝑖 𝐹⁄ . 

We need to choose F for which 𝐹. 𝐻𝐷 𝐿𝑖⁄ = 440 to get 𝐻𝐷 𝐻𝐷⁄ = 1,1, which is the max ratio encountered during 
the performances of ILC (see § 4). In the interval 𝐹. 𝐻𝐷 𝐿𝑖⁄ ∈ [440; +∝[, Equation (4) can be approached with the 

Equation 𝐿𝑜𝑔(𝐻𝐷) = 𝐿𝑜𝑔(𝐻𝐷) + 0,868 ඥ𝐹. 𝐻𝐷 𝐿𝑖⁄⁄ , that is to say a straight line when the abscissa is plotted 

as 1/√𝐹 and the ordinate is plotted Log(HD). This approximation can be reasonably used from 𝐹. 𝐻𝐷 𝐿𝑖⁄ = 15 
(error on HD less than 0,5%), corresponding to a ratio 𝐻𝐷 𝐻𝐷⁄ = 1,667. 

Model of Nix & al.: 

Considering Equation (2): 

 Considering that, thanks to geometrical properties of indentations, h and h* of Equation (2) are 
proportional to d² and to a hypothetical d*² corresponding to h*; 

 Considering a hypothetical hardness HD* corresponding to the indentation depth h*, from Equation (2) we 

can find that 𝐻𝐷∗ = 𝐻𝐷. √2; 
 Considering F*, hypothetical loading force corresponding to HD*, so that 𝑑∗ଶ = 𝐾. 𝐹∗ 𝐻𝐷∗⁄ ; 

 Considering that 
∗


=

ௗ∗

ௗ
, which is exactly true for Vickers testing and an approximation for Brinell testing; 

 And combining Equation (2) and the upper enables us to find Equation (5) as follows: 

∗


= ට

ி∗.ு

ி.ுబ.√ଶ
, then 

ቀ
ு

ுబ
ቁ

ଶ
= 1 + ට

ி∗.ு

ி.ுబ.√ଶ
, then 

𝐻𝐷ସ − 2. 𝐻𝐷
ଶ. 𝐻𝐷ଶ −

𝐹∗. 𝐻𝐷
ଷ

𝐹. √2
. 𝐻𝐷 − 𝐻𝐷

ସ = 0 

that can be reformulated as follows (using 𝑁𝑖𝑥 = 𝐹∗ √2⁄ ): 

𝐻𝐷ସ − 2. 𝐻𝐷
ଶ. 𝐻𝐷ଶ − 𝑁𝑖𝑥. 𝐻𝐷

ଷ. 𝐻𝐷 𝐹⁄ − 𝐻𝐷
ସ = 0 (5) 

where “HD” is the measured hardness for a given load “F” 
“HD0” is the hardness measured with a load large enough to avoid any indentation size effect, 

Nix is a constant depending on the shape of the indenter, the modulus of elasticity and HD0. 
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This polynomial of degree 4 is not easy to handle. However, all coefficients are independent from F except the 
slope, which varies as function of 1/F. 

Model of power law: 

Combining Equation(3) and equation 𝐻𝐷 = 𝑘. 𝐹/𝑑² (k constant) enables us to find Equation (6) as follows: 

log(𝐻𝐷) = (𝑃ଵ − 1 𝑀𝑒ଶ⁄ ). log(𝐹) + 𝑃ଶ 𝑀𝑒ଶ⁄  (6) 

where “HD” is the hardness test result 
“HD0” is the hardness measured with a load large enough to avoid any indentation size effect, 

“F” is the load applied to perform the hardness test,  
P1, P2 and Me2 are constants. 

Conclusion concerning models: 

In conclusion of the upper, only Equation (6) is easy to handle because it can be plotted as a straight line as soon as 
logarithmic scales are used for the abscissas and the ordinates.  

To deal with Equation (4) and Equation (5), HD as function of 1/F and log(HD) as function of 1 √𝐹⁄  should be plotted.  

2.2.3 Contributions of scientific knowledge for the determination of the uncertainty on assigned 
values (uXpt) 

uXpt is composed of two contributions: 

 A contribution coming from the adequacy of the model to the situation encountered during the PT 
performance; 

 A contribution coming from the uncertainties related to the data used in the model and how they combine 
each other in this model (typically, how uncertainties on data used to plot a regression straight line combine 
to produce a given uncertainty on a given Xpt somewhere on the regression straight line). 

Concerning the first one, most of publications listed here upper show very good correlation coefficients on their 
figures. It shall be noticed that tests that were used to plot them are likely to have been obtained in repeatability 
conditions, that is to say, in far better conditions than the reproducibility ones that we normally face during a PT 
performance. On the other hand, the range of the parameters considered in these publications is in most cases 
equal or wider than encountered in PT performance (for example, the F range studied varies in a ratio of 1 to 1000 
in both cases). As a conclusion, no formal way to determine the contribution of adequacy of models on uncertainties 
can be drawn for bibliography but, at this stage, this contribution seems to be minor. 

Concerning the second one, the issue is completely depending on statistical techniques and will be dealt with 
further on in § 3.3.2. 

2.2.4 Contributions of scientific knowledge for the determination of the standard deviation for the 
proficiency testing (σpt), the standard deviation of homogeneity (σH) and the standard 
deviation of repeatability (σrpt) 

As all studies described in bibliography were conducted within a single laboratory (or, if not, no information is 
available about this respect), no relevant direct information can be taken from scientific literature concerning this 
issue. However, it shows the main causes for ISE to occur (movements of dislocations, surface of the test specimens, 
good or bad condition of the indenter, …) that can easily be classified in material dependent and/or laboratory 
dependent and/or machine dependent and/or operator dependent issues, which can more or less affect each of 
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the standard deviations relevant for proficiency testing. Conditions can significantly vary from a PT to another, in 
accordance with PT provider instructions to participants. For example, surface preparation of test specimens may 
be performed by the PT provider or let to participants. According to the option, the related scatter will be included 
in the homogeneity standard deviation or in the interlaboratory standard deviation. 

In the same way, no relevant direct information can be taken from scientific literature concerning the issue of 
homogeneity of samples. In particular, no conclusion can be made about whether the standard deviation of 
homogeneity has some chance to be independent to loading conditions or not. However, the relationship between 
movements of dislocations in the metal and ISE should be considered with respect to this issue. 

As a conclusion, no valuable information was found in the literature concerning any possible indentation size effect 
on standard deviations used in a PT. However, it is well known that uncertainty on hardness tests increase with 
decreasing load. We can then guess that the standard deviations relevant for a PT follow the same way. 

2.3 The Monte-Carlo method 

The Monte-Carlo methods are a large category of algorithms that use random numerical realisations of a given 
model. They are often used to solve mathematical or physical problems, difficult or impossible to solve by other 
methods. For a survey of the history and applications of the Monte-Carlo methods, see for example [13]. 

Hard calculations are needed to solve several of the issues of this document (interval of confidence on σH, 
uncertainties on regressions for which residues are not uniformly distributed), that could not be solved with another 
method Monte-Carlo.  

However, using Monte-Carlo methods requests to use a model that represents reasonably well the situations that 
we want to deal with. To achieve this, an appropriate modelling is needed. This is obviously not a problem in the 
present case. 

Using the Monte-Carlo methods also requests to use random input values. When several random values are 
necessary to produce one Monte-Carlo result and when correlations between them apply in the phenomenon to 
be modelize, these correlations must be incorporated in the input values of the computations. That can be a bit 
difficult to do properly. In our case, only one random variable is needed and no correlation is to be feared. 

To assure the validity of the conclusions, the random series need to be numerous enough, depending on many 
factors. In our study, we computed series of 106 to 108 numbers for each situation. Each of these series was divided 
in sub-groups. This enables us to compute the standard deviation of the parameters that we are determining. This 
standard deviation is then used to determine an interval of confidence (IC) for each of the determinations, with an 
enlargement coefficient equal to 2. We decided to stop the Monte-Carlo processes when we considered that the 
IC is small enough for each particular issue to solve. These IC are provided in the results when relevant and drove 
the rounding of the results that are provided by this study. 

3 Design of experiments 

3.1 Introduction  

For each of the parameters needed to conduct an ILC (see § 1), the following steps were followed: 

 Compare several models that can adequately represent the phenomenon and select the most adequate 
one; 
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 In accordance with the selection, find a model to determine the associated uncertainties, in order to be 
able to validate the selected model; 

 Define a procedure on how to determine output scale parameters from input scale parameters with respect 
to the number of available input scales and possibly with respect to how they combine. 

3.2 Selection of models 

Forms of appropriate models for Xpt were extensively discussed in § 2.2.2. The results of this survey were used to 
select which models to check. 

For standard deviations, several models were checked: 

 Power law expressed in its logarithmic form, in order to plot linear regression; 
 Linear laws; 
 Constant laws (i.e. the parameter is not significantly affected by the scale). 

To plot the curves, several options are possible: 

1. Use the participants results altogether; 
2. Use the regressions of each individual participant; 
3. Use the parameters obtained from the data processing of each of the input scales; 
4. Use the parameters obtained from the data processing of each of the input scales weighted with the 

number of test results used for each of them. 

In option 1, outliers cannot be detected (because it cannot be decided whether a significant gap is due to a gross 
error or to an ISE effect). As outlying results have a very strong effect on ILC results, this option was abandoned. 

Option 2 consists in: 

1. Compute the regression parameters participant per participant; 
2. Determine the global regression parameters by averaging them from all regression results. 

This method has the advantage of erasing the “lab effect” in the regression. However, it significantly lowers the size 
of the data available to compute parameters (only results from participants that have provided results for several 
scales can be taken into account). This option was then also abandoned. 

Option 3 consists in: 

1. Process the test results scale per scale as usually performed; 
2. Plot the parameters determined for each scale as function of the applied load. 

This option has the advantage of avoiding the deleterious effect of outliers. However, the parameters of each scale 
are similarly weighted in the regression even if they were not obtained from the same number of participants, and 
consequently, are not affected by the same uncertainty. 

Option 4 consists in same operations than option 3, but at step 2, the value obtained on each scale is input in the 
regression as many times as the number of test results used to obtain them. This option keeps the advantages of 
option 3 but suppresses its disadvantage. That is why this option 4 was used to plot regression lines as exposed in 
§ 4. 
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3.3 Determination of associated uncertainties 

3.3.1 Uncertainties on input scales  

Uncertainties on parameters for input scales are needed to check the validity of the model used to determine 
output scale parameters. If the regression line does not cut satisfactorily the segments representing the 
uncertainties on input scale parameters, the selected model cannot be regarded as satisfactory. 

In CompaLab PT concerning hardness tests, each participant receives 3 samples and provides 2 test results for each 
sample, i.e. 6 test results per participant. Consequently, for input scales σpt values are computed as follows: 

1. Compute the standard deviation obtained by each participant on each sample (3 SD for each participant); 
2. Compute the repeatability of the participant from these 3 standard deviations, using the classical formula 

𝑠 = ට∑ 𝑠
ଶ 3⁄ ; 

3. Compute σrpt with Algo S (see [3]) applied to the series of sr of each participant. 

The resulting number of degrees of freedom is approximately (2 − 1). 3. 𝑁 = 3. 𝑁, where Np is the number of 
participants (the approximation comes from the use of the robust Algo S, that replaces possible outliers by virtual 
values computed from the initial data). 

In the same way, for input scales σH values are computed as follows: 

1. Compute the mean value obtained by each participant on each sample (3 �̅� per participant); 
2. Compute the homogeneity standard deviation for each participant from these 3 mean values (using the 

classical formula 𝑠ு, = ඥ∑(𝑥పഥ − �̿�)ଶ 2⁄ ); 
3. Compute wH with Algo S (see [3]) applied to the series of sH of each participant; 
4. Compute σH with the classical formula, as follows in Equation (7): 

𝑠𝐻 = ට𝑤𝐻
2 − 𝜎𝑟𝑝𝑡

2 3⁄  (7) 

The resulting number of degrees of freedom is approximately (3 − 1). 𝑁 = 2. 𝑁, where Np is the number of 
participants. 

Uncertainty on Xpt values: 

uXpt values are provided by the data processing of input scales in accordance with recommendations of ISO 13528 
(classical formula with k = 2 as enlargement coefficient and an extra coefficient of 1,25 because of the use of Algo 
A). 

Uncertainty on σpt values: 

σpt values are computed in accordance with recommendations of ISO 13528 (i.e. Algo A on mean values of 
participants). Consequently, the resulting number of degrees of freedom is approximately 𝑁 − 1. The 
approximation is also due to the use of Algo A. The classical formula for the IC on a standard deviation estimate is: 

𝑠 = 𝜎 ඨ
𝜒ିଵ

ଶ (𝑃)

𝑛 − 1
   (8) 
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where s is the estimate of a standard deviation computed from the series, 
σ is the standard deviation to be estimated, 

P is the is the cumulated probability used for the IC 
and n is the number of values used for computing the standard deviation. 

The uncertainties on σpt values were computed with the Equation (8) in which: 

 n value is Np-1, where Np is the number of participants; 
 P values chosen equal to 0,025 and 0,975, corresponding to a bilateral IC of 95%. 

A numerical simulation with the Monte-Carlo method confirmed the validity of this method of determination. 

Uncertainty on σrpt values: 

σrpt values are computed as explained here upper, with a number of degrees of freedom equal to 3.Np. We can use 
Equation (8) in which: 

 n value is 3.Np, where Np is the number of participants; 
 P values chosen equal to 0,025 and 0,975, corresponding to a bilateral IC of 95%. 

A numerical simulation with the Monte-Carlo method confirmed the validity of this method of determination. 

Uncertainty on σH values: 

σH values are computed as explained here upper, with a number of degrees of freedom equal to 2.Np. We can use 
Equation (8) in which: 

 n value is 2.Np, where Np is the number of participants; 
 P values 0,025 and 0,975, corresponding to a bilateral IC of 95%.  

However, numerical simulations with the Monte-Carlo method did not confirm the validity of this method of 
determination because of the effect of the 𝜎௧

ଶ 3⁄  term in Equation (7). A study about this issue was then 
performed, which results are provided in § 4.1. 

3.3.2 Uncertainties on output scales  

Introduction  

The uncertainty on Xpt in output scales is the only one that is needed to process the data in a proficiency test in 
accordance with ISO 13528 (see § 2). Uncertainties on other parameters are useful for checking the validity of the 
selected model but are not needed to assess the results of participants. 

Uncertainty on output values from regressions 

As, for output scales, Xpt is determined by using a regression plot, we need to refer to statistical knowledge to 
determine uXpt. When the regression curve of (xi,yi) couples is a straight line and residues belong to a same Gaussian 
distribution which mean value is 0 and which standard deviation is σres, the standard uncertainties on regression 
parameters are: 

 On the slope: 

𝑢 =
𝑠௦

𝜎௫
. ඥ𝑛௩ − 1

 (9) 

 On the ordinate at origin: 
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𝑢 = 𝑠௦ ඥ𝑁௦⁄  (10) 

where 𝑠௬
 is the estimated variance of yi values, 

𝜎௫
 is the variance of xi values, 

and Ns is the number of input scales. 

It shall be noted that: 

1. Equation (10) is simplified from the general equation because abscissas in our study are related to hardness 
scales, which are exactly defined and not coming from an estimation. Consequently, σx and sx are always 
exactly same; 

2. Even when many (xi,yi) couples introduced in the regression as suggested as in option 4 of § 3.2, these 
values are not independent, and then nv must be limited to the number of input scales. 

Standard uncertainty on a Yi value computed with the regression parameters for an abscissa Xi is: 

𝑢
= ට𝑢

ଶ. (𝑋 − 𝑋ത)ଶ + 𝑢
ଶ (11) 

Effect of the absence of homoscedasticity of residues 

In practice, in our study, for technical reasons, the standard deviations of residues are larger for scales with low 
charge than scales with high charge. The hypothesis of homoscedasticity is not fulfilled and Equation (11) cannot 
be validly used to compute 𝑢

. To address this problem, we performed numerical simulations using the Monte-
Carlo method. Results are provided in § 4.2. 

3.4 Procedure to determine output scale parameters from input scale parameters 

Several models are proposed and discussed in § 4. According to the type of test (Brinell or Vickers, the latter having 
low charges and normal charges scales), to the products (soft in the range of HD 150-250 or hard in the range of 
HD 500-750) and to the years, the number of available input scales can vary from 1 to 6 or more. Of course, the 
suitability of the model selected to determine parameters for output scales strongly depends on this number.  

Typically, the number of constants of a possible model cannot be more than the number of available input scales. 
For example, if a polynomial of degree 2 is used as model, at least 3 input scales need to be used and checking the 
adequacy of it requests at least 4 input scales. Of course, models with more parameters are likely to provide better 
estimates of output parameters than those with less parameters. The general rule is then that a model that includes 
n parameters should not be used if less than n-1 input scales are available. This general rule may be not followed 
in some cases which are discussed in § 4. In these cases, recommendations are provided to check the validity of the 
selected model.  

The performance of CompaLab ILC supposes to determine Xpt, uXpt, σpt, σrpt and σH. For each of these parameters, 
the following steps were followed: 

 Overview of the results of the related CompaLab ILC between 2017 and 2023; 
 Evaluation of the adequacy of several possible models for each of these ILC; 
 Proposal of recommendations to select the most appropriate model for each type of situation. 

In order to assure total comparability of results, all ILC parameters were re-computed with the last version of the 
software, what can lead to little differences with the formerly published ones, in particular concerning σH. 
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For ILC concerning low hardness of 2023, samples from 2020 and 2021 were used. Thanks to that, a larger range of 
input scales and test results are available for these ILC, in particular for Vickers hardness tests for which low load 
scales are also available. 

The list of PT sessions which results were used in this study is enclosed in Table 2 as follows: 

Table 2. List of PT sessions used in this study. 

Product Type of 
hardness 

Year Input scales 

Hard 
metal HBW 2017 HBW 2,5/187,5 - HBW 10/3000 

Hard 
metal 

HV 2017 HV5 - HV10 - HV30 

Soft 
metal 

HBW 2017 HBW 2,5/187,5 - HBW 10/3000 

Soft 
metal 

HV 2017 HV0,1 - HV0,3 - HV1 - HV10 

Hard 
metal 

HBW 2018 HBW 2,5/187,5 - HBW 10/3000 

Hard 
metal 

HV 2018 HV5 - HV10 - HV30 

Soft 
metal HBW 2018 

HBW 2,5/187,5 - HBW 5/750 - 
HBW 10/3000 

Soft 
metal 

HV 2018 
HV0,1 - HV0,3 - HV1 - HV5 - 

HV10 - HV30 

Hard 
metal 

HBW 2019 HBW 2,5/187,5 - HBW 10/3000 

Hard 
metal 

HV 2019 HV5 - HV10 - HV30 

Soft 
metal 

HBW 2019 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Soft 
metal 

HV 2019 HV0,1 - HV0,1 - HV1 - HV5 - 
HV10 - HV30 

Hard 
metal HBW 2020 HBW 2,5/187,5 

Product Type of 
hardness 

Year Input scales 

Hard 
metal HV 2020 HV5 - HV10 - HV30 

Soft 
metal 

HBW 2020 
HBW 1/30 - HBW 2,5/187,5 - 

HBW 2,5/187,5 - HBW 10/3000 

Soft 
metal 

HV 2020 
HV0,1 - HV0,3 - HV1 - HV5 - 

HV10 - HV30 

Hard 
metal 

HBW 2021 HBW 2,5/187,5 

Hard 
metal 

HV 2021 HV5 - HV10 - HV30 

Soft 
metal 

HBW 2021 HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Soft 
metal HV 2021 

HV0,1 - HV0,3 - HV1 - HV5 - 
HV10 - HV30 

Hard 
metal 

HBW 2022 
HBW 2,5/187,5 - HBW 5/750 - 

HBW 10/3000 

Hard 
metal 

HV 2022 HV5 - HV10 - HV30 

Soft 
metal 

HBW 2022 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Soft 
metal 

HV 2022 
HV0,1 - HV0,3 - HV1 - HV5 - 

HV10 - HV30 

Hard 
metal 

HBW 2023 HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Hard 
metal HV 2023 HV5 - HV10 - HV30 

 

In conclusion, a procedure is proposed to help the selection of the most adapted model for each encountered 
situation. 

4 Results and discussions 

4.1 Uncertainties on input σH  

It was identified in § 3.3.1 that uncertainties related to the determination of σH cannot be properly computed with 
Equation (8). This issue was studied using the Monte-Carlo method. The corresponding results are provided in 
Figure 1 and detailed results in Table A.1. 



 Interpolation of VA according to loading charges 04/2024 - Page 17/52 
 
 

 

CompaLab – 16, av. du Général de Gaulle, 93110 Rosny-sous-Bois - +33 9 83 05 93 50 – ilc@compalab.org – www.compalab.org  
SIRET : 799855721.00012 – RCS : 799855721 RCS BOBIGNY - APE/NACE : 7320Z – TVA : FR 90 799855721 

When 𝜎ு 𝜎௧⁄  is less than a certain ratio depending on Np, the numerical simulation shows that the lower limit of 
the IC95% is 0, whatever σH, see Figure 1. 

 
Figure 1: Lower and upper limits of the IC95% of sH/σH for Np participants, 3 samples per participant, 2 test results per sample. 

Several statements can be made from these results: 

1. Equation (8) cannot be used to determine 𝑠ு 𝜎ு⁄  ratios when 𝜎ு 𝜎 < 2⁄ . When 𝜎ு 𝜎 ≥ 2⁄ , the 𝜎௧
ଶ 3⁄  

term in Equation (7) becomes negligeable and Equation (8) can be used to determine 𝑠ு 𝜎ு⁄  ratios. 
However, this situation is normally never encountered in practice; 

2. Here upper, the Monte-Carlo method was used to check whether the distribution of 𝑠ு 𝜎ு⁄  ratios can be 
found with Equation (8). However, in practice, we get sH values and we need an IC on σH. Consequently, we 
need to know 𝜎ு 𝑠ு⁄  rather than 𝑠ு 𝜎ு⁄ . Of course, upper limits of 𝑠ு 𝜎ு⁄  are lower limits of 𝜎ு 𝑠ு⁄  and 
vice-versa. However, when 𝑠ு = 0, 𝜎ு 𝑠ு⁄  ratios become infinite, and no upper limit can be computed by 
this method. As these situations occur for “low values” of 𝜎ு 𝜎⁄ , we can solve the problem in the following 
way: when sH = 0, knowing Np we can find from Figure 1 an absolute maximum for 𝜎ு 𝜎⁄  and deduce an 
upper limit for σH from the estimate of σr; 

3. In the same way, for each particular situation, we need 𝜎ு 𝜎⁄  ratio to locate the abscissa to use in Figure 1, 
but the figure that is actually available is 𝑠ு 𝑠⁄  (computed from estimations of σH and σr). 

A second round of numerical simulations was then performed to determine limits of IC for σH as a function of 𝑠ு 𝑠⁄  
and Np. Because: 

1. IC on σH appear to be very large; 
2. They are needed only to check whether their impact on σpt is not too large; 
3. It almost never happens for hardness tests; 
4. Reference standards do not even raise the question of the reliability with which σH is determined; 

we only considered empiric formulas that can only be used in the context of this study.  

However, this issue is quite important for the reliability of PT programs and will be more comprehensively studied 
in a further work. 

Anyway, performing the Monte-Carlo method to this issue requests the generation of a set of 𝜎ு 𝜎⁄  random values 
for which 𝑠ு 𝜎ு⁄  and 𝑠ு 𝑠⁄  ratios are computed and plotted to each other. Of course, the way in which this set is 
constituted influences the final results, especially the ends of the plotted curves. For this study, we decided to use 
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random 𝜎ு 𝜎⁄  values distributed on a log normal distribution with 𝜎ு 𝜎⁄ = 0,8 as mean value and 25% as standard 
deviation (it produces 99,7% of 𝜎ு 𝜎⁄  random values in the interval [0,15;4,5]). 

The results of it are displayed in Figure 2 to Figure 4: 

 Figure 2 shows clouds of 𝑠ு 𝜎ு⁄  values obtained for Np from 6 to 63. It can be seen that values obtained 
are scattering around 2 segments. The first one joins the dots [0;0] and [1;1]. The second one follows the 
equation 𝑥 = 1 for 𝑥 > 1. The scatter decreases when Np increases. When σH and sH are low, their ratio 
behaves oppositely in Figure 1 and in Figure 2; 

 Figure 3 shows clouds of 𝜎ு 𝑠⁄  values obtained for Np from 6 to 63. Envelope curves of the clouds can be 
used as acceptable upper limits of confidence for σH, as function of 𝑠ு 𝑠⁄ , which values are available for 
the PT provider. On these figures, centiles 2,5% and 97,5% were computed for each section of 𝜎ு 𝑠⁄  values, 
and a regression curve in the form 𝐼𝐶 = 𝐵. 10(.௦ಹ ௦ೝ⁄ ) is drawn; 

 Figure 4 shows the evolution of coefficients A and B of the Equation 𝐼𝐶 = 𝐵. 10(.௦ಹ ௦ೝ⁄ ) as function of Np. 
A linear regression applies, enabling the formulation of empirical equations to determine upper and lower 
IC limits for σH as function of 𝑠ு 𝑠⁄  and Np, for 3 samples and 2 test results per sample for each participant. 

 

Figure 2.a: sH/σH obtained on series with Np=6 
participants, 3 samples per participant, 2 test 

results per sample 

Figure 2.b: sH/σH obtained on series with Np=16 
participants, 3 samples per participant, 2 test 

results per sample 

Figure 2.c: sH/σH obtained on series with Np=63 
participants, 3 samples per participant, 2 test 

results per sample 

Figure 3.a: sr/σH obtained on series with Np=6 
participants, 3 samples per participant, 2 test 

results per sample 

Figure 3.b: sr/σH obtained on series with Np=16 
participants, 3 samples per participant, 2 test 

results per sample 

Figure 3.c: sr/σH obtained on series with Np=63 
participants, 3 samples per participant, 2 test 

results per sample 

 
Figure 4: sr/σH 2,5% and 97,5% centiles as function of log(Np), 3 samples per participant, 2 test results per sample 
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As a conclusion, the determination of limits for σH can be performed as follows: 

1. Determine sH and 𝑠ு 𝑠⁄  using Equation (7); 
2. If 𝑠ு = 0, 𝐼𝐶(𝜎ு) = [0; 𝐼𝐶ା] where IC+ is computed with Equation (12); 
3. If 0 < 𝑠ு 𝑠⁄ < 1,5, 𝐼𝐶(𝜎ு) = [𝐼𝐶ି; 𝐼𝐶ା] where IC- is computed with Equation (13) IC+ is computed with 

Equation (12); 
4. If 𝑠ு 𝑠⁄ > 1,5, 𝐼𝐶(𝜎ு) = [𝐼𝐶ି; 𝐼𝐶ା] where IC- and IC+ are computed with Equation (8). 

𝐼𝐶ା(𝜎ு) = 𝑠 . 10
ቀ൫,ଵ.൫ே൯ା,ଵ଼൯.௦ಹ ௦ೝ⁄ ା൫ି,ଶ଼.൫ே൯ା,ଶ൯ቁ

   (12) 

Where: 

𝐼𝐶ା(𝜎𝐻) is the upper limit 97,5% of the interval of confidence on the homogeneity standard deviation  
and Np is the number of participants to the PT program. 

𝐼𝐶ି(𝜎ு) = 𝑠 . 10
ቀ൫,ଵ.൫ே൯ା,ଷ൯.௦ಹ ௦ೝ⁄ ା൫,ଷ.൫ே൯ି,ସ൯ቁ

   (13) 

Where: 
𝐼𝐶−(𝜎𝐻) is the lower limit 2,5% of the interval of confidence on the homogeneity standard deviation  

and Np is the number of participants to the PT program. 

In practice, 𝑠ு 𝑠⁄  often belongs to the interval [0,5;1,5] and Np in the interval [10;25]. Consequently, with respect 
to the upper, σH is most often underestimated and the IC on it is generally quite large. 

4.2 Effects of lack of homoscedasticity of residues in regression 

In our study, for technical reasons, the standard deviations of residues are larger for scales with low charge than 
scales with high charge. The hypothesis of homoscedasticity is not fulfilled and Equation (11) cannot be validly used 
to compute 𝑢

. To address this problem, we performed numerical simulations using the Monte-Carlo method to 
check the validity of the computed uXpt values, for a selection of situations that represent the usual ones 
encountered during the CompaLab PT programs. Both Brinell and Vickers usual scales roughly follow a geometric 
progression, as shown in Table 3: 

Table 3. Geometric progression of Brinell and Vickers usual input scales. 

Brinell Vickers 

Subsequent scales Corresponding ratio Subsequent scales Corresponding ratio 

30 and 187,5 6,25 ( 100,8) 0,1 and 0,3 3 ( 100,5) 

187,5 and 750 4 ( 100,6) 0,3 and 1 0,33 ( 100,5) 

750 and 3000 4 ( 100,6) 1 and 5 5 ( 100,7) 

- - 5 and 10 2 ( 100,3) 

- - 10 and 30 3 ( 100,5) 

It follows that x values used in regressions that use log(F) as abscissas distribute quite regularly. When Nix or Li 
model are used, residues remain related to the logarithmic progression of scales, while abscissas are to be 
transformed from log(F) to 1/F and 1/√F respectively (see Table 4). 

It can be seen from results (see § 4.4 and § 4.6) that residues can be modelized with a power law model (equation 
of the form σ௦,ி = 𝑎. 10ି୪୭(ி)/ where a and b are constants, F is the load applied during the hardness test).  
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We can expect that these larger residues for low charge have two effects: 

 Decreasing the centre of gravity of the regression, because results the results of low charges introduce 
more scatter than results from high charges; 

 Enlarging the intervals of confidence of regression parameters. 

Numerical simulations using the Monte-Carlo method were performed to check this. These simulations involved 
regressions computed from 3, 5 and 7 “y” results centred on 0, with standard deviations on residues on “y” varying 
as 10௫ ⁄  with b values varying from 3 to 20. As an example, the case for which with b = 10 is shown in Table 4: 

Table 4. Typical example of abscissas and related standard deviations of residues encountered in the ILC, for which b = 10. 

x = log(F) -5 -4 -3 -2 -1 0 1 2 3 4 5 

x = 1/F 316,2 100 31,62 10 3,162 1 0,316 0,1 0,031 0,01 0,003 

x = 1/√F 17,78 10 5,623 3,162 1,778 1 0,562 0,316 0,178 0,1 0,056 

σres  3,162 2,512 1,995 1,585 1,259 1 0,794 0,631 0,501 0,395 0,316 

 

Option 4 of § 3.2 leads to compute regressions with groups of same (x,y) values, each of them representing an input 
scale. The number of (x,y) couples is intended to weight the input values, and consequently, differ for each group. 
However, no significant differences were found between the simulations where the number of test results are same 
for all groups and the situations where the number of test results are distributed symmetrically around a central 
value (situations that are usually encountered in practice). The calculations were then simplified into single couples, 
each of them representing a full group of (x,y) couples. 

Results are provided in Figure 5 here after. They are displayed as ratios 𝑢௬ 𝑢௬,௧⁄  where uy is the result from the 
Monte-Carlo calculations and uy,th is the theoretical uncertainty that can be computed with Equation (11). 
𝑢௬ 𝑢௬,௧⁄ = 1 then signifies that no difference occurs between theoretical and actual uy, i.e. the lack of 
homoscedasticity has no effect on uncertainty on the y-value in the corresponding case. 

 

 b = 20 and x = log(F) b = 20 and x = 1/F b = 20 and x = 1/√F 
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 b = 10 and x = log(F) b = 10 and x = 1/F b = 10 and x = 1/√F 

 
 b = 5 and x = log(F) b = 5 and x = 1/F b = 5 and x = 1/√F 

 
 b = 3,333 and x = log(F) b = 3,333 and = 1/F b = 3,333 and = 1/√F 

Figure 5: uy from Monte-Carlo calculations over uy from Equation (11)  
as function of N (number of x values used in the regression) b and the form of the abscissas. 

Conclusions when abscissas are in the form of log(F) (use of the power law model): 

The effect of variating residues as function of F on the global uncertainty as computed with Equation (11) can be 
evaluated with the empirical Equation (14), as follows: 

𝑢௬

𝑢௬,௧

= 𝑀𝑎𝑥 ൭0,8; 𝐾. ቆ𝐴 −
𝐵. 𝑆𝑖𝑔𝑛(𝑥 − 𝛥𝑥)

𝑥 − 𝛥𝑥
ቇ൱ (14) 

where 𝑢௬ is the true uncertainty on yi values, 
𝑢௬,௧ is the theoretical uncertainty on yi values, computed with Equation (11), 

K is a coefficient representing the global increase of uncertainties, computed with Equation (14).a, 
A is a coefficient computed with Equation (14).b 
B is a coefficient computed with Equation (14).c 

Δx is a coefficient representing the move of the centre of gravity of xi, computed with Equation (14).d. 
and 𝑆𝑖𝑔𝑛(𝑥 − 𝛥𝑥) is the sign of 𝑥 − 𝛥𝑥, i.e. -1 if 𝑥 − 𝛥𝑥 < 0 and +1 if 𝑥 − 𝛥𝑥 > 0. 
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K = 1 + 10൫(,ଵ ⁄ ି,ଵଶ).ேିଶ.୪୭()ା,଼൯ (14).a 

A = 1 + (0,73. log(𝑁) + 0,06). (
1

𝑏
− 0,042) 

(14).b 

B = (2. log(𝑁) − 0,34). (
1

𝑏
− 0,04) 

(14).c 

𝛥𝑥 = N. ൬
1,45

𝑏ଶ
−

1,05

𝑏
+ 0,002൰ 

(14).d 

where N is the number of results included in the regression, 
b characterizes the variation of residues on y values (as 10௫ ⁄ ). 

A minimum conventional value of 0,8 is introduced in Equation (14) because the main term  
𝐴 − ൫𝐵. 𝑆𝑖𝑔𝑛(𝑥 − 𝛥𝑥)൯ (𝑥 − 𝛥𝑥)⁄  is not valid when x is too close to the centre of the distribution, i.e. when  
𝑥 ≈ 𝛥𝑥. 

No significant effect (i.e. 𝑢௬ 𝑢௬,௧⁄ ≈ 1) occurs when b > 20. In practice, results showed that b is generally more 
than or equal to 10, for which corrections are between 0,98 and 1,05. When b is lower than 10, Equations (14) 
should be used to estimate the uncertainties on the computed values. 

Conclusions when abscissas are in the form of 1/F or 1/√F (use of the Nix or Li model): 

When the Nix or the Li models are used, we are facing 3 types of situations: 

1. F is greater than the max F of the input scales. 𝑢௬ 𝑢௬,௧⁄  is then huge (up to 2) but uy remains acceptable 
because the related abscissa remains very close to the central x0 value. When such uy are needed, 
coefficients 𝑢௬ 𝑢௬,௧⁄  equal to 1,5 for the Nix model and 2 for the Li model can be used whatever b and N; 

2. F belongs to the interval of F values used to compute the regression coefficients. Then, 𝑢௬ 𝑢௬,௧⁄  are usually 
between 0,9 and 1,1. A value pertaining to this interval can then be adopted for calculation of uy, whatever 
b and N; 

3. F is lower than the min F of the input scales. 𝑢௬ 𝑢௬,௧⁄  becomes asymptotic to values that can be read from 
the right part of the corresponding figures and displayed in Table 5. However, x-values are then huge, 
leading to uy too large to be relevant in most cases, especially for the Nix model. This is because, in those 
cases, all y-values used in the regression are cramped in the left part of the figure. This issue is also dealt 
with in § 5.2 with respect to results coming from actual ILC. 

Table 5. Values of uy/uy,th for large values of 1/F or 1/√F. 

 x = 1/F (Nix model) x = 1/√F (Li model) 

 b = 20 b = 10 b = 5 b = 3,33 b = 20 b = 10 b = 5 b = 3,33 

N = 3 1,05 1,1 1,35 1,6 1 1,05 1,25 1,55 

N = 5 1,05 1,15 1,4 1,7 1 1,05 1,3 1,63 

N = 7 1,05 1,2 1,45 1,8 1 1,05 1,35 1,7 
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4.3 Assigned value Xpt  

4.3.1 Introduction 

Following the statements of § 2.2, several models were checked by using the results of the recent CompaLab ILC: 

 The power law model, plotting log(HD) as a function of log(F); 
 All results of a single ILC are coming from a same product. Then, differences between the HD results are 

not very important (usually less than 10%) and log(HD) is almost proportional to HD. Moreover, handling 
standard deviations related to log values is a bit more complicated than those from direct values. Then, 
plotting HD as a function of log(F) was also checked in order to check whether the power law model can be 
simplified thanks to that; 

 The Nix & al. model, plotting HD as a function of 1/F; 

 The Li & al. model, plotting log(HD) as a function of 1 √𝐹⁄ . 

4.3.2 Preliminary survey focused on 2020, 2021 and 2022 Vickers results 

A first survey of how models fit was performed on Vickers results of years 2020, 2021 and 2022 for which a large 
quantity of results (respectively 166, 218 and 139), and of input scales (HV0,1 HV0,3 HV1 HV5 HV10 and HV30) are 
available. The results of this first survey are available in Figure 6.a to c. 

 
Figure 6.a: Assigned values as function of scales – 2020 Vickers hardness test results. 
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Figure 6.b: Assigned values as function of scales – 2021 Vickers hardness test results. 

 
Figure 6.c: Assigned values as function of scales – 2022 Vickers hardness test results. 
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It can be seen from these figures that:  

1. No significant differences occur between the “pure” power law model and the approximated one (not using 
log of ordinates); 

2. Slight differences occur between the straight-line regressions using weighted input assigned values (option 
4 of § 3.2), in black on the figures, and the unweighted ones (option 2 of § 3.2), in blue dotted lines on the 
figures. It makes then sense to use weighted regressions rather than unweighted ones; 

3. No significant differences occur between mean values obtained from all tests together and means values 
that were obtained by using only one result per participant (blue and orange horizontal lines superpose 
themselves, so that no difference can be seen between the two). It makes then sense to use the “one result 
per participant” option, that avoids any possible covariance within same participant’s results. Moreover, 
the related computed uncertainties are then more reliable; 

4. Unsurprisingly, slight differences occur between overall mean values computed from usual scales (short 

lines for which 0,5 ≤ log (𝐹) ≤ 2, 0 ≤ 1 𝐹⁄ ≤ 0,2 and 0 ≤ 1 √𝐹⁄ ≤ 0,5) and from all scales (long lines) 

including low load scales (HV0,1 for which log(𝐹) = −1, 1 𝐹⁄ = 10 and 1 √𝐹⁄ ≈ 3,15). In all cases, such 
overall mean values fit well to input assigned values of usual F values (i.e. HV5 and upper). To check this, a 
test of significance of the slope of the regression line compared to uncertainties on input assigned values 
was performed and results are provided here after; 

5. Consistent with the conclusion 4 here upper, a significant ISE only applies to “low charge” Vickers hardness, 
i.e. HV1 and lower; 

6. For the power law model, an approximation using a polynomial of degree 2 fits significantly better than a 
simple straight-line regression. However, upper scales (typically HV30) appear then to be in the increasing 
zone of the polynomial, what is obviously irrelevant (indentation size effect is supposed to lower HD when 
the load is increasing until a constant HD0 which is reached for high values of loading). The minimum of the 
polynomial can be computed and regarded as HD0 value. This approach is detailed here after; 

7. Contrarily, despite the Li & al. model forecasts a polynomial of degree 2 (however with coefficients linked 
together, see § 2.2.2), straight-line regressions are obviously enough to describe properly the ISE in the 
context of ILCs; 

8. In the Li & al. model, the usual scales for which 0 ≤ 1 𝐹⁄ ≤ 0,2, are cramped in the left part of the figures. 
Moreover, these scales usually provide most of the available data. We could then expect the uncertainties 
on slope coefficients to be not good. But this does not seem confirmed by the figures. To check this, a 
comparison between models was performed using regression coefficients. Corresponding results are 
provided here after. 

Test of significance of the slope of the regression line compared to uncertainties on input assigned values: 

The ratio Za of Equation (15) was constructed to check whether the slope of the regression is significantly different 
from 0 or not. 

𝑍 =
𝑎. (𝑀𝑎𝑥ி − 𝑀𝑖𝑛ி)

ඨ
∑ 𝑛. 𝑢௧,

ଶ


∑ 𝑛

   
(15) 

Where Za is a score of significance for the slope, 
a is the slope of the regression straight line, 

MaxF and MinF are respectively the maximum and the minimum values of the abscissas used for the regression, 
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ni is the number test results used to determine Xpt of the ie input scale 
uXpt,i is the uncertainty of the ie input scale. 

In this ratio: 

 The term 𝑎. (𝑀𝑎𝑥ி − 𝑀𝑖𝑛ி) represents the range of variation of the ordinates of the regression within the 
interval of calculation of it; 

 The ට∑ 𝑛𝑖. 𝑢𝑋𝑝𝑡,𝑖
2

𝑖 ∑ 𝑛𝑖𝑖ൗ  term represents a weighted quadratic mean value of the uncertainties on the assigned values 

of input scales. 

With respect to usual practices, we can consider that the slope is significant when |Za|>2. When a significant slope 
is detected, we can conclude that a significant ISE occurs within the scales of the ILC. However, as the ISE effect is 
assumed to decrease HD measured as the load increases, we will only consider cases where the sign of Za confirms 

this, i.e. Za > 2 for abscissas in log(F) and Za < -2 for abscissas in 1/F and 1 √𝐹⁄ . 

Test of significance of the slope of the regression line compared to its own uncertainty: 

The Za coefficient then compares the variations of HD within input scales to the uncertainties on input scale 
parameters. Another test which compares the slope to its uncertainty would make sense, as follows. 

𝑍௨ =
𝑎. (𝑀𝑎𝑥ி − 𝑀𝑖𝑛ி)

𝑢

   (16) 

Where Zua is a score of significance for the slope, 
a is the slope of the regression straight line, 

MaxF and MinF are respectively the maximum and the minimum values of the abscissas used for the regression, 
ua is the uncertainty of the slope as computed with Equation (9). 

With respect to usual practices, we can consider that the slope is significant when |Zua|>2. When a significant slope 
is detected, we can conclude that a significant ISE occurs within the scales of the ILC.  

Zua score is more efficient than Za when the number of scales and test results is important (i.e. more than 3). 

HD0 determinations according to the models: 

In both Li & al. and Nix & al. models, HD0 are the ordinate at origin of the regression line. Consequently, both their 
values and, if necessary, the uncertainties on these values are easy to determine. 

In the power law model: 

 No HD0 exists in the straight-line regression; 
 HD0 is the minimum ordinate of the polynomial, that can easily be determined as follows. 

If the regression produces an equation of the form: 𝑦 = 𝑎ଶ. 𝑥ଶ + 𝑎ଵ. 𝑥 + 𝑎, the minimum ordinate is obtained for: 

log (𝐹) = −𝑎ଵ (2.⁄ 𝑎ଶ) (17) 

and as HD0 is the ordinate corresponding to this abscissa −𝑎ଵ (2.⁄ 𝑎ଶ), i.e.: 

𝐻𝐷 = −
𝑎ଵ

ଶ

4. 𝑎ଶ

+  𝑎 (18) 
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Where HDa is the hardness free of ISE, 
a0, a1 and a2 are the coefficients of the regression polynomial of degree 2 (cf. equation here upper). 

When the polynomial of degree 2 equation is used, F0 for which log (𝐹) = −𝑎ଵ (2.⁄ 𝑎ଶ) shall be determined, and 

the polynomial law 𝐻𝐷 = 𝑎ଶ. ൫𝑙𝑜𝑔(𝐹)൯
ଶ

+ 𝑎ଵ. 𝑙𝑜𝑔(𝐹) + 𝑎 shall be used only for 𝐹 < 𝐹. When 𝐹 ≥ 𝐹, HD shall 
be chosen as equal to HD0 as computed with Equation (18). 

Of course, HD0 can also be determined from the overall mean value of test results for which no significant ISE occurs, 
i.e. for HV5 and upper in the present case. 

Comparison of results obtained from models: 

Results of Za, HD0 and r² for Vickers hardness in ILC of years 2020, 2021 and 2022 are provided in Table 6. 

Table 6. Results of Za, HD0 and r² for Vickers hardness in ILC of years 2020, 2021 and 2022. 

Parameter Year 
Power law 
polynomial 

Power law 
straight line 

Overall test 
results 

Nix & al. 
HD = a/F+b 

Li & al. 
log(HD) = 

a/√F+b 

Za  

2020 - -2,28 - +2,95 +2,74 

2021 - -7,3 - +8,8 +8,8 

2022 - -5,3 - +6,4 +6,1 

HD0  

2020 183,6 - 183,9±0,7 183,8±0,2 183,0±1,5 

2021 177,0 - 177,4±0,5 177,7±1,2 175,9±1,7 

2022 177,7 - 177,5±0,6 178,0±0,5 176,6±1,4 

r² 

2020 0,849 0,600 - 0,979 0,975 

2021 0,990 0,850 - 0,955 0,979 

2022 0,932 0,790 - 0,966 0,980 

It can be concluded from these data that: 

1. Nix and Li models seem to be slightly better than the power law one even when ameliorated with a 
polynomial regression; 

2. All ways of computing HD0 provide very similar results. If necessary, the uncertainty for HD0 computed with 
the polynomial law can be estimated by excess with its value from straight line regression; 

3. Za coefficient as defined in Equation (15) is relevant to check whether a significant ISE occurs in the results 
of the ILC. 

4.3.3 Results from other ILC 

For all other results of ILC for which at least 3 input scales are available, we checked each of the conclusions of 
§ 4.3.2. Table 7 encloses the results of this check: 

 Only conclusions that differ to those of § 4.3.2 are mentioned in the table; 
 When only 3 input scales are available, any polynomial regression is irrelevant. No conclusion was then 

provided about polynomial regression in those cases. 
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Table 7. Check of conclusions of 4.3.2 for other ILC for which at least 3 input scales are available. 

Product 
Type of 

hardness 
Year Input scales Conclusion of check 

Hard 
metal 

HV 2017 HV5 - HV10 - HV30 
The signs of Za coefficients are opposite to what is expected. 
All input AV fit with the overall mean value 

Soft 
metal 

HV 2017 HV0,1 - HV0,3 - HV1 - HV10 
Power law straight line shows a significantly better r² than Li 
and Nix. Polynomial regression is irrelevant 

Hard 
metal 

HV 2018 HV5 - HV10 - HV30 Nothing specific to note 

Soft 
metal 

HBW 2018 
HBW 2,5/187,5 - HBW 5/750 - 

HBW 10/3000 
Overall mean value is obviously the most relevant option (r² 
coefficients are not good for all of the regressions) 

Soft 
metal 

HV 2018 HV0,1 - HV0,3 - HV1 - HV5 - 
HV10 - HV30 

Nothing specific to note 

Hard 
metal 

HV 2019 HV5 - HV10 - HV30 A notable ISE occurs even if all scales are more than HV1 

Soft 
metal 

HBW 2019 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

No notable ISE occurs, including for the HBW 1/30 (9,8 
Newton) scale 

Soft 
metal 

HV 2019 
HV0,1 - HV0,1 - HV1 - HV5 - 

HV10 - HV30 
Nothing specific to note 

Hard 
metal 

HV 2020 HV5 - HV10 - HV30 
Power law straight line shows a significantly better r² than Li 
and Nix 

Soft 
metal 

HBW 2020 
HBW 2,5/187,5 - 

HBW 2,5/187,5 - HBW 10/3000 
Overall mean value is obviously the most relevant option (r² 
coefficients are not good for all of the regressions) 

Hard 
metal 

HV 2021 HV5 - HV10 - HV30 Nothing specific to note 

Soft 
metal 

HBW 2021 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

An ISE occurs within the scales 

Hard 
metal 

HBW 2022 
HBW 2,5/187,5 - HBW 5/750 - 

HBW 10/3000 
Overall mean value is obviously the most relevant option (r² 
coefficients are not good for all of the regressions) 

Hard 
metal 

HV 2022 HV5 - HV10 - HV30 A slight ISE occurs 

Soft 
metal 

HBW 2022 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

A slight ISE occurs 

Hard 
metal 

HBW 2023 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Overall mean value is obviously the most relevant option (r² 
coefficients are not good for all of the regressions) 

Hard 
metal 

HV 2023 HV5 - HV10 - HV30 A notable ISE occurs even if all scales are more than HV1 

In the same way, we checked conclusions of § 4.3.2 that are applicable for ILC where only one or two input scales 
are available. Table 8 encloses the results of this check. 

  



 Interpolation of VA according to loading charges 04/2024 - Page 29/52 
 
 

 

CompaLab – 16, av. du Général de Gaulle, 93110 Rosny-sous-Bois - +33 9 83 05 93 50 – ilc@compalab.org – www.compalab.org  
SIRET : 799855721.00012 – RCS : 799855721 RCS BOBIGNY - APE/NACE : 7320Z – TVA : FR 90 799855721 

Table 8. Check of conclusions of 4.3.2 for which only 1 or 2 input scales are available. 

Product 
Type of 

hardness 
Year Input scales Conclusion of check 

Hard 
metal 

HBW 2017 HBW 2,5/187,5 - HBW 10/3000 No significant ISE occurs 

Soft 
metal 

HBW 2017 HBW 2,5/187,5 - HBW 10/3000 No significant ISE occurs 

Hard 
metal 

HBW 2018 HBW 2,5/187,5 - HBW 10/3000 
A slight ISE is likely to occur (|Za|=1,9). However, the overall 
mean value fits the AV of both input scales 

Hard 
metal 

HBW 2019 HBW 2,5/187,5 - HBW 10/3000 
A slight ISE might occur (|Za|=1,5). However, the overall 
mean value fits the AV of both input scales 

Hard 
metal 

HBW 2020 HBW 2,5/187,5 The overall mean value fits the AV of the input scale 

Hard 
metal 

HBW 2021 HBW 2,5/187,5 The overall mean value fits the AV of the input scale 

 

4.3.4 Conclusions for the determination of Xpt  

Results of Table 7 and Table 8 enable to set up a typology of the encountered situations: 

Case 1. 4 to 6 input scales are available, including low load scales, typically Vickers hardness on soft metal, that 
include scales from HV0,1 to HV30. Figure 6.a to c provide examples of this case. In those cases, an ISE 
obviously occurs, that can be well described by the polynomial model, the Li model and the Nix model. 
In most cases, the straight-line model is not as good as the others; 

Case 2. 3 to 5 input scales are available for which an ISE occurs, but the polynomial regression is not obviously 
relevant. Figure 7 shows a typical example of this situation; 

Case 3. 3 to 5 input scales are available, and no ISE seems to occur, or the slope is of the unexpected sign. In 
those cases, the use of the overall mean value is likely to be a good solution to determine Xpt for output 
scales. Figure 8 shows a typical example of this situation; 

Case 4. 2 input scales are available, typically for Brinell test on hard metal. In general, it is not possible to draw 
a definite conclusion on whether an ISE occurs or not. Figure 9 shows a typical example of this situation; 

Case 5. Only 1 input scale is available, typically for Brinell test on hard metal. In general, the overall mean value 
fits well with the AV of the input scale. Figure 10 shows a typical example of this situation. 

In general, the examination of the graphs and of r² and Za values enables to select the most appropriate model. This 
examination can also include more global information like s(Δzi) as used in and § 5.3. In cases 3, 4 and 5, the use of 
the overall mean value, based on a large data, is generally the most adapted solution to determine Xpt of output 
scales.  

However, in cases 4 and 5, as no clear conclusion can be made on whether an ISE occurs, extrapolation of Xpt should 
be limited to adjacent scales. 

In the Li model, all computations were conducted using log(HD) as ordinates. However, as shown for the power law 
option, no significant differences are likely to occur between the processing with HD and with log(HD), because 
HD/HD0 is always lower than 1,1. 
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The limit of indentation size of d = 0,3 mm that was found in the literature (see § 2.2.1) upper which no ISE is 
supposed to occur can also be used to decide whether Xpt can be taken as a constant or not. d can be computed 
from the general equations of standard and are reminded in Table 9. This can be very useful for Brinell tests, for 
which the same HD0 can be a priori used for all scales for soft metals and for all scales except HBW 1/30 scale for 
hard metals. 

These conclusions do not take into account the approximations due to the models. We stated in § 2.2.2 that for 
both Li and Nix models, formulas could be approached by straight lines provided that F is large enough to do so. In 
any case, for these models, the straightness of the plots needs to be checked to make sure that approximations 
remain valid for the considered F values. 

 

 
Figure 7: Assigned values as function of scales – 2019 Vickers hardness test results on hard metal. 
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Figure 8: Assigned values as function of scales – 2019 Vickers hardness test results on soft metal. 

 
Figure 9: Assigned values as function of scales – 2019 Brinell hardness test results on hard metal. 
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Figure 10: Assigned values as function of scales – 2020 Brinell hardness test results on hard metal. 

 
Table 9. Limit HD values for d ≥ 0,3 mm. 

 Vickers Brinell 

 HV5 HV10 HV30 HBW 1/30 

HD max 103 206 618 415 

 

4.4 Standard deviation for the assessment of the bias σpt  

4.4.1 Introduction  

Even if the attention is usually mainly focused on the quality of determination of Xpt (including in ISO 13528, that 
cares about uXpt but not about uncertainties related to standard deviations), the main source of inaccuracy in the 
determination of the scores used to trigger alerts is the lack of quality in the determination of σpt. For this reason, 
much attention was paid to this issue. 

Normal probability plots of 𝜎௧ 𝑋௧⁄  ratios were performed for checking whether: 

 σpt values can be supposed to be rather constant whatever Xpt or rather proportional to Xpt; 
 𝜎௧ 𝑋௧⁄  ratios depend on the product (soft or hard) and on the type of hardness tests (Brinell or Vickers); 
 𝜎௧ 𝑋௧⁄  ratios can be regarded as normally distributed. 

For guidance concerning normal probability plots and their interpretation, see [14]. 

Results are provided in Figure 11. 
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Figure 11: Normal probability plots of σpt/Xpt determined during CompaLab hardness tests ILC between 2017 and 2023. 

It can be seen from the figure that: 

1. σpt values can be regarded as proportional to Xpt and a central value for 𝜎௧ 𝑋௧⁄  is about 2% all scales, all 
products and both Brinell and Vickers hardness tests all together. This is quite important because provides 
a general guidance on the range in which we can expect σpt to be, and even a related interval of confidence; 

2. HV SM and HV HM curves are more horizontal than HBW SM and HBW HM. This means that HV ratios are 
more centred around the 2% value than HBW ratios; 

3. In the same way, HV SM and HBW SM curves are more horizontal than HV HM and HBW HM. This means 
that SM (soft metals) ratios are more centred around the 2% value than HM (hard metals) ratios. 

4.4.2 Results of survey on Vickers hardness test results of years 2020, 2021 and 2022 

In the same way than for Xpt, a first survey was made on Vickers results of years 2020, 2021 and 2022 for the same 
reasons than for Xpt. 

Figure 12.a to c provide the results of σpt determined during the ILC concerning Vickers hardness tests in years 2020, 
2021 and 2022. 

 
Figure 12.a: Standard deviation for assessment of the bias, as function of scales – 2020 Vickers hardness test results on soft metal. 
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Figure 12.b: Standard deviation for assessment of the bias, as function of scales – 2021 Vickers hardness test results on soft metal. 

 
Figure 12.c: Standard deviation for assessment of the bias, as function of scales – 2022 Vickers hardness test results on soft metal. 

It can be seen from these figures that:  

1. An ISE obviously occurs for σpt as well as for Xpt. Determination of σpt as the overall mean value from all 
scale is irrelevant. No need to compute any kind of Za to confirm it. Variations of σpt as function of scales 
are quite more important than for Xpt (1 to 6 to be compared to 1 to 1,1); 

2. Slight differences occur between the straight-line regressions using weighted input assigned values (option 
4 of § 3.2), in black on the figures, and the unweighted ones (option 2 of § 3.2), in blue dotted lines on the 
figures. It makes then sense to use weighted regressions rather than unweighted ones; 

3. No significant differences occur between mean values obtained from all tests together and means values 
that were obtained by using only one result per participant (blue and orange horizontal lines superpose 
themselves, so that no difference can be seen between the two). It makes then sense to use the “one result 
per participant” option, that avoids any possible covariance effect within same participant’s results. 
Moreover, the related computed uncertainties are then more reliable; 

4. The linear regression and the polynomial regression provide results very close to each other. No need to 
use polynomials to predict correctly σpt from input scales. 

It is then possible to compute any σpt for an output scale using the Equation (19), as follows: 

log (𝜎௧,ி) =   𝑎. 𝑙𝑜𝑔(𝐹) + 𝑏 (19) 

Where σpt is the standard deviation used for assessing the proficiency of participants of scale F 
a and b are the regression coefficients. 

Equation (19) can also be formulated as follows: 

𝜎௧,ி =   10(.(ி)ା) 
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4.4.3 Results from other ILC 

For all other results of ILC for which at least 3 input scales are available, we checked each of the conclusions of 
§ 4.4.2. Table 10 encloses the results of this check (only conclusions that differ to those of § 4.4.2 are mentioned in 
the table). 

Table 10. Check of conclusions of § 4.4.2 for other ILC for which at least 3 input scales are available. 

Product 
Type of 

hardness 
Year Input scales Conclusion of check 

Hard 
metal 

HV 2017 HV5 - HV10 - HV30 Nothing specific to note 

Soft 
metal HV 2017 HV0,1 - HV0,3 - HV1 - HV10 

Slope of the regression line has the unexpected sign. 
Polynomial regression is irrelevant 

Hard 
metal 

HV 2018 HV5 - HV10 - HV30 Nothing specific to note 

Soft 
metal 

HBW 2018 
HBW 2,5/187,5 - HBW 5/750 - 

HBW 10/3000 
No significant ISE occurs  

Soft 
metal 

HV 2018 
HV0,1 - HV0,3 - HV1 - HV5 - 

HV10 - HV30 
Nothing specific to note 

Hard 
metal 

HV 2019 HV5 - HV10 - HV30 
Slope of the regression line has the unexpected sign. 
Polynomial regression is irrelevant 

Soft 
metal 

HBW 2019 HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Correlation coefficient is not very good. Polynomial 
regression is irrelevant 

Soft 
metal HV 2019 

HV0,1 - HV0,1 - HV1 - HV5 - 
HV10 - HV30 Nothing specific to note 

Hard 
metal 

HV 2020 HV5 - HV10 - HV30 Nothing specific to note 

Soft 
metal 

HBW 2020 
HBW 2,5/187,5 - 

HBW 2,5/187,5 - HBW 10/3000 
Slope of the regression line has the unexpected sign. 
Polynomial regression is irrelevant 

Hard 
metal 

HV 2021 HV5 - HV10 - HV30 Nothing specific to note 

Soft 
metal 

HBW 2021 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Correlation coefficient is not very good 

Hard 
metal 

HBW 2022 HBW 2,5/187,5 - HBW 5/750 - 
HBW 10/3000 

Correlation coefficient is not very good 

Hard 
metal HV 2022 HV5 - HV10 - HV30 No significant ISE occurs. Polynomial regression is irrelevant 

Soft 
metal 

HBW 2022 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Polynomial regression is irrelevant 

Hard 
metal 

HBW 2023 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

No significant ISE occurs. Polynomial regression is irrelevant 

Hard 
metal 

HV 2023 HV5 - HV10 - HV30 Polynomial regression is irrelevant 

Contrarily to § 4.4.2, the use of a calculation of Za can be useful to decide whether the slope of the straight line is 
significant or not. In this case, Equation (15) must be reconsidered because the ordinates are plotted as logarithms 
and the related uncertainties need to be transformed into logarithms as well. This raises two difficulties: 
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1. The uncertainties on estimates of standard deviations follow square roots of χ² distributions, that are not 
symmetrical; 

2. The transformation of ordinates into their logarithms also introduce asymmetry in the limits of intervals of 
confidence. 

Luckily, despite these two asymmetries, the range of IC is kept whatever the coefficient of enlargement, as shown 
in Table 11. It is reminded that in the case of the estimation of σpt, n is equal to the number of participants for the 
scale. 

Table 11. Relative range of intervals of confidence of estimates of standard deviations as function of n (number of data used 
for the calculation of the estimate) and the level of confidence of the interval of confidence. 

  n 

kG IC 8 10 13 16 20 25 32 40 

3 99,73% 1,117 1,090 1,067 1,053 1,042 1,033 1,025 1,020 

2,5 98,76% 1,094 1,072 1,054 1,043 1,034 1,026 1,020 1,016 

2 95,45% 1,075 1,058 1,043 1,034 1,027 1,021 1,016 1,013 

1,5 86,64% 1,060 1,046 1,034 1,027 1,022 1,017 1,013 1,010 

1 68,27% 1,049 1,038 1,028 1,023 1,018 1,014 1,011 1,009 

0,5 38,29% 1,043 1,033 1,025 1,020 1,016 1,012 1,009 1,008 

For example, for n = 8, the actual IC95% is equal to 2 x 1,075 = ±2,15.u instead of the ±2.u that would occur if the 
distribution were Gaussian. However, even if the extents of IC are kept whatever k, the central value is not located 
at the centre of the IC, and the distance between the two changes (reduces) with “n”. 

Thanks to the results displayed in Table 11, Equation (15), that only deals with the extents of uncertainties, can be 
used to determine the Za coefficients. 

In the same way, we checked conclusions of § 4.4.2 that are applicable for ILC where only one or two input scales 
are available. Table 12 encloses the results of this check. 

Table 12. Check of conclusions of § 4.4.2 for which only 1 or 2 input scales are available. 

Product 
Type of 

hardness Year Input scales Conclusion of check 

Hard 
metal 

HBW 2017 HBW 2,5/187,5 - HBW 10/3000 Slope is not significantly different from 0 

Soft 
metal 

HBW 2017 HBW 2,5/187,5 - HBW 10/3000 
Slope is likely to be different from 0, but the conclusion is not 
robust because of lack of input scales 

Hard 
metal 

HBW 2018 HBW 2,5/187,5 - HBW 10/3000 Slope is not significantly different from 0 

Hard 
metal 

HBW 2019 HBW 2,5/187,5 - HBW 10/3000 Slope is not significantly different from 0 

Hard 
metal 

HBW 2020 HBW 2,5/187,5 The overall mean value fits with σpt of the input scale 

Hard 
metal HBW 2021 HBW 2,5/187,5 The overall mean value fits with σpt of the input scale 

 



 Interpolation of VA according to loading charges 04/2024 - Page 37/52 
 
 

 

CompaLab – 16, av. du Général de Gaulle, 93110 Rosny-sous-Bois - +33 9 83 05 93 50 – ilc@compalab.org – www.compalab.org  
SIRET : 799855721.00012 – RCS : 799855721 RCS BOBIGNY - APE/NACE : 7320Z – TVA : FR 90 799855721 

4.4.4 Conclusions for the determination of σpt  

Results of Table 7 and Table 8 show that a polynomial regression is never relevant. The following typology of the 
encountered situations can be set up: 

Case 1. 3 to 6 input scales are present, and a significant decreasing slope is present. In those cases, a straight-
line regression can be computed to link log(σpt) and log(F). Figure 12.a to c here upper show examples 
of this situation; 

Case 2. 3 to 6 input scales are present, and no significant decreasing slope is present. In those cases, σpt 
computed from the test result per participant is relevant. Figure 13.a and b show examples of this 
situation; 

Case 3. Only 1 or 2 input scales are present. In those cases, σpt computed from the test result per participant 
is likely to be relevant. However, the extrapolation should be limited to adjacent output scales because 
of lack of confidence due to lack of input scales. Figure 14 shows an example of this situation. 

 

 
Figure 13.a: Standard deviation for assessment of the bias, as function of scales – 2017 Vickers hardness test results on soft metal. 

 
Figure 13.b: Standard deviation for assessment of the bias, as function of scales – 2022 Brinell hardness test results on hard metal. 
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Figure 14: Standard deviation for assessment of the bias, as function of scales – 2019 Brinell hardness test results on hard metal. 

In all cases, the examination of the graphs and the use of the regression coefficient enables to select the most 
appropriate model. This examination can also include more global information like s(Δzi) as used in and § 5.3. 

4.5 Uncertainty uXpt on the assigned value Xpt 

ISO 13528 proposes to compute uXpt from σpt using the equation (20), as follows: 

𝑢௧ = 1,25.
𝜎௧

ඥ𝑝
   (20) 

Where uXpt is the uncertainty on Xpt, 
σpt is the standard deviation used for assessing the bias of participants 

p is the number of participants. 

When σpt can be regarded as independent from scales (Case 2 and Case 3 of § 4.4.4), uXpt can then also be regarded 
as independent from scales. It can then be computed with the Equation (21), as follows: 

𝑢௧ = ඨ
∑ 𝑛 . 𝑢௧,

ଶ


∑ 𝑛

   (21) 

Where uXpt represents a weighted quadratic mean value of the uncertainties on the assigned values of input scales, 
ni is the number test results used to determine Xpt of the ie input scale 

uXpt,i is the uncertainty of the ie input scale. 

When σpt cannot be regarded as independent from scales (Case 1 of § 4.4.4), we cannot use Equation (19) because 
of the term ඥ𝑁 of Equation (20) which is different for each scale. We then need to compute the regression of uXpt 
against log(F), in the same way than in § 4.4.4. All statements of § § 4.4.4 also apply to this computation. 

We get then the Equation (22) (quite similar to Equation (19)) to compute any uXpt for an output scale, as follows: 

log (𝑢௧,ி) =   𝑎. 𝑙𝑜𝑔(𝐹) + 𝑏 (22) 

Where uXpt is the standard uncertainty used for assessing the proficiency of participants of scale F 
a and b are the regression coefficients. 

Equation (22) can also be formulated as follows: 

𝑢௧,ி =   10(.(ி)ା) 
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When the polynomial option is selected, only the left half of the parabola is used. For F values equal to or more 
than the minimum of the parabola, Xpt = HD0 and uXpt can be chosen equal to uHDo. 

4.6 Standard deviation of repeatability σrpt  

4.6.1 Introduction  

Normal probability plots of 𝜎௧ 𝜎௧⁄  ratios were performed in order to check whether: 

 σrpt values can be supposed to be rather constant whatever σpt or rather proportional to σpt; 
 𝜎௧ 𝜎௧⁄  ratios depend on the product (soft or hard) and on the type of hardness tests (Brinell or Vickers); 
 𝜎௧ 𝜎௧⁄  ratios can be regarded as normally distributed. 

For guidance concerning normal probability plots and their interpretation, see [14]. 

Results are provided in Figure 15. 

 
Figure 15: Normal probability plots of σpt/Xpt determined during CompaLab hardness tests ILC between 2017 and 2023. 

It can be seen from the figure that: 

1. σrpt values can be regarded as proportional to σpt and a central value for 𝜎௧ 𝜎௧⁄  is about 28% all scales, 
all products and both Brinell and Vickers hardness tests all together. This is quite important because 
provides a general guidance on the range in which we can expect σrpt to lie, and even a related interval of 
confidence; 

2. HV SM and HV HM curves are above HBW SM and HBW HM ones by about 5%; 
3. HV SM and HV HM curves are more horizontal than HBW SM and HBW HM. This means that HV ratios are 

more centred around their central values than HBW ratios; 
4. HV SM and HBW SM curves are above than HV HM and HBW HM ones by about 15%; 
5. HV SM and HBW SM curves are more horizontal than HV HM and HBW HM. This means that SM (soft 

metals) ratios are more centred around their central value than HM (hard metals) ratios. 
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4.6.2 Results of survey on Vickers hardness test results of years 2020, 2021 and 2022 

In the same way than for Xpt, a first survey was made on Vickers results of years 2020, 2021 and 2022 for the same 
reasons than for Xpt. 

Figure 16.a to c provide the results of σrpt determined during the ILC concerning Vickers hardness tests in years 
2020, 2021 and 2022. 

 
Figure 16.a: Repeatability standard deviation, as function of scales – 2020 Vickers hardness test results on soft metal. 

 
Figure 16.b: Repeatability standard deviation, as function of scales – 2021 Vickers hardness test results on soft metal. 

 
Figure 16.c: Repeatability standard deviation, as function of scales – 2022 Vickers hardness test results on soft metal. 

It can be seen from these figures that:  

1. In 2020 and 2021, an ISE obviously occurred for σrpt as well as for Xpt and σpt. Determination of σpt as the 
overall mean value from all scale is irrelevant. However, 2022 figures seem erratic: adoption of a constant 
log(σrpt) = 0,1 seems the less irrelevant; 
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2. Slight differences occur between the straight-line regressions using weighted input assigned values (option 
4 of § 3.2), in black on the figures, and the unweighted ones (option 2 of § 3.2), in blue dotted lines on the 
figures. It makes then sense to use weighted regressions rather than unweighted ones; 

3. In 2021 and 2022, no significant differences occur between mean values obtained from all tests together 
and means values that were obtained by using only one result per participant (blue and orange horizontal 
lines superpose themselves, so that no difference can be seen between the two). In 2020, the means values 
obtained without redundancy of participants is obviously more relevant. It makes then sense to use the 
“one result per participant” option, that avoids any possible covariance effect within same participant’s 
results. Moreover, the related computed uncertainties are then more reliable; 

4. The linear regression and the polynomial regression provide results are either very close to each other or 
irrelevant. No need to use polynomials to predict correctly σpt from input scales. 

In most cases, it is then possible to compute any σrpt for an output scale using the Equation (23), as follows: 

log (𝜎௧,ி) =   𝑎. 𝑙𝑜𝑔(𝐹) + 𝑏 (23) 

Where σrpt is the standard deviation used for assessing the proficiency of participants of scale F 
a and b are the regression coefficients. 

Equation (23) can also be formulated as follows: 

𝜎௧,ி =   10(.(ி)ା) 

With same justification than in § 4.4.3, a computation of Za with Equation (15) can help to decide whether Equation 
(23) should be used or not. 

4.6.3 Results from other ILC 

For all other results of ILC for which at least 3 input scales are available, we checked each of the conclusions of 
§ 4.6.2. Table 13 encloses the results of this check (only conclusions that differ to those of § 4.6.2 are mentioned in 
the table). 

Table 13. Check of conclusions of § 4.6.2 for other ILC for which at least 3 input scales are available. 

Product 
Type of 

hardness 
Year Input scales Conclusion of check 

Hard 
metal 

HV 2017 HV5 - HV10 - HV30 Slope is not significantly different from 0 

Soft 
metal 

HV 2017 HV0,1 - HV0,3 - HV1 - HV10 Same situation than “Soft metal HV 2022” 

Hard 
metal HV 2018 HV5 - HV10 - HV30 Slope is not significantly different from 0 

Soft 
metal 

HBW 2018 
HBW 2,5/187,5 - HBW 5/750 - 

HBW 10/3000 
Nothing specific to note 

Soft 
metal 

HV 2018 
HV0,1 - HV0,3 - HV1 - HV5 - 

HV10 - HV30 
One scale (HV5) is a kind of outlier 

Hard 
metal 

HV 2019 HV5 - HV10 - HV30 Nothing specific to note 

Soft 
metal 

HBW 2019 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Same situation than “Soft metal HV 2022” 
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Product 
Type of 

hardness 
Year Input scales Conclusion of check 

Soft 
metal 

HV 2019 
HV0,1 - HV0,1 - HV1 - HV5 - 

HV10 - HV30 
Nothing specific to note 

Hard 
metal 

HV 2020 HV5 - HV10 - HV30 Slope is not significantly different from 0 

Soft 
metal 

HBW 2020 HBW 2,5/187,5 - 
HBW 2,5/187,5 - HBW 10/3000 

Slope is not significantly different from 0 

Hard 
metal HV 2021 HV5 - HV10 - HV30 Slope is not significantly different from 0 

Soft 
metal 

HBW 2021 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Same situation than “Soft metal HV 2022” 

Hard 
metal 

HBW 2022 
HBW 2,5/187,5 - HBW 5/750 - 

HBW 10/3000 
Slope is not significantly different from 0 

Hard 
metal 

HV 2022 HV5 - HV10 - HV30 Nothing specific to note 

Soft 
metal 

HBW 2022 
HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Nothing specific to note 

Hard 
metal 

HBW 2023 HBW 1/30 - HBW 2,5/187,5 - 
HBW 5/750 - HBW 10/3000 

Slope is not significantly different from 0 

Hard 
metal HV 2023 HV5 - HV10 - HV30 Slope is not significantly different from 0 

In the same way than in § 4.4.2, the use of a calculation of Za can be useful to decide whether the slope of the 
straight line is significant or not. For same reasons than in § 4.4.3, Equation (15), that only deals with the sizes of 
uncertainties, can be used to determine the Za coefficients. 

In the same way, we checked conclusions of § 4.4.2 that are applicable for ILC where only one or two input scales 
are available. Table 14 encloses the results of this check. 

Table 14. Check of conclusions of § 4.6.2 for which only 1 or 2 input scales are available. 

Product 
Type of 

hardness 
Year Input scales Conclusion of check 

Hard 
metal 

HBW 2017 HBW 2,5/187,5 - HBW 10/3000 
Slope is of the unexpected sign and is close to limit to be 
significant 

Soft 
metal 

HBW 2017 HBW 2,5/187,5 - HBW 10/3000 Use of a constant is compatible with the results of the 2 
scales 

Hard 
metal HBW 2018 HBW 2,5/187,5 - HBW 10/3000 

Slope is of the unexpected sign and is close to limit to be 
significant 

Hard 
metal 

HBW 2019 HBW 2,5/187,5 - HBW 10/3000 
Slope is of the unexpected sign and is close to limit to be 
significant 

Hard 
metal 

HBW 2020 HBW 2,5/187,5 The overall mean value fits with σrpt of the input scale 

Hard 
metal 

HBW 2021 HBW 2,5/187,5 The overall mean value fits with σrpt of the input scale 
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4.6.4 Conclusions for the determination of σrpt  

Results of Table 13 and Table 14 show that a polynomial regression is never relevant. They enable to set up a 
typology of the encountered situations: 

Case 1. 3 to 6 input scales are present, and a significant decreasing slope is present. In those cases, a straight-
line regression can be computed to link log(σrpt) and log(F); 

Case 2. 3 to 6 input scales are present, and no significant decreasing slope is present. In those cases, σrpt 
computed from the test result per participant is relevant; 

Case 3. Only 1 or 2 input scales are present. In those cases, σrpt computed from the test result per participant 
is likely to be relevant. However, the extrapolation should be limited to adjacent output scales because 
of lack of confidence due to lack of input scales. 

In all cases, the examination of the graphs and the use of the regression coefficient enables to select the most 
appropriate model. This examination can also include more global information like s(Δzi) as used in § 5.3. 

4.7 Standard deviation of homogeneity σH  

4.7.1 Introduction  

In accordance with conclusions of § 3.3.1, we could expect that no Gaussian distribution can be found for σH. Normal 
probability plots confirmed this expectation.  

4.7.2 Results of survey on Vickers hardness test results of years 2020, 2021 and 2022 

In the same way than for Xpt, a first survey was made on Vickers results of years 2020, 2021 and 2022 for the same 
reasons than for Xpt. 

Figure 17.a to c provide the results of σH determined during the ILC concerning Vickers hardness tests in years 2020, 
2021 and 2022. 

 
Figure 17.a: Homogeneity standard deviation, as function of scales – 2020 Vickers hardness test results on soft metal. 



 Interpolation of VA according to loading charges 04/2024 - Page 44/52 
 
 

 

CompaLab – 16, av. du Général de Gaulle, 93110 Rosny-sous-Bois - +33 9 83 05 93 50 – ilc@compalab.org – www.compalab.org  
SIRET : 799855721.00012 – RCS : 799855721 RCS BOBIGNY - APE/NACE : 7320Z – TVA : FR 90 799855721 

 
Figure 17.b: Homogeneity standard deviation, as function of scales – 2021 Vickers hardness test results on soft metal. 

 
Figure 17.c: Homogeneity standard deviation, as function of scales – 2022 Vickers hardness test results on soft metal. 

It can be seen from these figures that an ISE seems to occur for σH. However, because of the phenomena described 
in § 3.3.1, the uncertainties on σH are so huge that the slope cannot be regarded as significant. Moreover, the use 
of the Za parameter might be problematic because of probable asymmetries that occur for the distributions of 
uncertainties. In all cases, σH computed from all values fits with the results of all input scales. 

On the technical point of view, σH is linked to the product and to the characteristic. Product is obviously exactly 
same. An argument can be developed to decide whether different scales of a same hardness test are different 
characteristics or not. If the answer were “yes”, then, by definition of homogeneity, σH is same whatever the scales. 
However, low charge hardness tests can detect local differences in hardness (typically in hardened layers) than high 
charge hardness tests. In the other hand, one hardness test is not necessarily made of only one hardness 
measurement. In fact, laboratories are supposed to describe in their procedures how many measurements shall be 
performed to make one hardness test result, and these procedures can request different numbers of 
measurements according testing conditions, among which the used scale can be considered. Consequently, 
increased scatter of low charge testing can be compensated by increasing the number of measured used to 
determine one test result. 

4.7.3 Results from other ILC 

All ILC from 2017 to 2023, for both soft metals and hard metals and both HV and HBW show the same situation. In 
particular, most of the lower limits of IC are 0 or very close to 0. In all cases, σH computed from all values fits with 
the results of all input scales with their uncertainties. 

4.7.4 Conclusion for determinations of σH  

Overall σH values from input scales should be used in all cases for output scales.  
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As a matter of fact, for input scales, σH values are only used in the determination of σpt. For output scales, σpt are 
computed from input scales, taking into account σH at the input stage. Consequently, σH of output scales is only 
needed for information and has no impact on assessing parameters. 

5 Proposals for calculation of output parameters from input scales 

5.1 Recommendations for procedures to determine output scale parameters 

The following steps are recommended to determine assessing parameters of output scales: 

Step 1: determination of input parameters 

Perform the statistical analysis of input scales as usual. Care should be taken to use same options for treatment for 
all scales. For example, if a standard deviation of rounding is introduced, the same rounding should be applied for 
all scales. If necessary (i.e. if different options are needed according to the scales), 2 statistical analyses may be 
performed: 

 One to be used for the assessment of test results of participants; 
 One to be used for the determination of output scale parameters, using the same options for all input 

scales. 

It may be valuable to perform some statistical analyses on scales with a number of participants too low to meet the 
requirements of internal procedures, but useful to increase the number of input scales even if the related 
uncertainties are large. In any cases, this adds information for the further treatment. 

Also perform a statistical analysis all results together, using only one test result per participant (typically the median 
value of all the test results from each of the scales in which it provided results). This statistical analysis is intended 
to provide the overall values of output parameters when necessary. 

Step 2: determination of output Xpt  

Plot Xpt and related uXpt from input scales, as function of log(F), Xpt as function of 1/F and log(Xpt) as function of 1/√F, 
and overall Xpt as computed at step 1, as shown in Figure 6.a to c. 

Build up a weighted series of ni.Xpt,i where i are each of the input scales. Compute the regression coefficients for: 

 The polynomial (degree 2) regression for Xpt as function of log(F), F0 and HD0 with Equations (17) and (18) 
(only the decreasing part for which F < F0 shall be used); 

 The straight-line regression for Xpt as function of log(F); 
 The straight-line regression for Xpt as function of 1/F; 
 The straight-line regression for Xpt as function of 1/√F. 

Compute r², Za and Zua (see Equations (15) and (16)), ua and ub (see Equations (9) and (10)) for each of the plots. 

Decide which model is the most adapted to determine output scale parameters as function of figures, r², Za and Zua 
results and the number of parameters of the model compared to the number of input scales. 

Step 3: determination of output σpt and σrpt  

Plot log(σpt) and log(σrpt) as function of log(F), as shown in Figure 12 and Figure 16 respectively. 
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Build up the weighted series of ni.σpt,i and ni.σrpt,i where i are each of the input scales. Compute the regression 
coefficients for the straight-line regressions of log(σpt) and log(σrpt) as function of log(F). 

Compute r² Za and Zua (see Equations (15) and (16)), ua and ub (see Equations (9) and (10)) for each of the plots.  

Decide whether a decreasing straight line or a constant straight-line (i.e. σ is independent to F) is the most adapted 
model to determine output scale parameters as function of figures, r², Za and Zua results. 

Step 4: determination of output uXpt: 

If it was decided at step 3 that σpt is independent to F, use Equation (21) to determine uXpt of output scales. If it was 
decided to use a decreasing straight-line to determine output σpt, use Equation (22) to determine uXpt. 

Step 5: determination of σH: 

Use the overall σH determined at step 1 as output value for σH. 

Step 6: determine output scale parameters: 

Use options decided at steps 2 to 5 to compute any output scale parameters and Equation (11) to compute the 
related uncertainties. Decide whether these output parameters can be used with respect to these uncertainties 
and how its fits on the figures plotted at steps 2 and 3. 

5.2 Example of determination of output scale parameters from input scale parameters 

As an example, this procedure was applied to results of 2020 Vickers tests on low hardness metal. 2 types of scales 
were checked: 

 Output results on scales that were used as input scales, in order to check how output results are in line with 
input results; 

 Output results on scales that are not input scales, in order to check whether output results make sense. 

It provided the following results: 

Output results on scales used as input scales: 

A comparison between computed parameters and input ones was performed, which results are provided in Table 
15 here after. 

 

Table 15. Comparison of input and output parameters for 2020 Vickers tests on low hardness metal. 

 Xpt  uXpt  σpt  σrpt  

Scale Polyn. Nix Li Input Polyn. Nix Li Input Output Input Output Input 

0,1 189,3 190,1 189,2 190,3 1,4 1,1 2,4 4,8 11,2 12,2 1,96 2,43 

0,3 186,6 185,88 186,6 185,5 1,1 0,46 1,4 3,2 8,67 8,51 1,80 1,64 

1 184,6 184,40 185,0 184,1 0,9 0,32 0,9 1,6 6,55 5,7 1,65 1,44 

5 183,6 183,89 183,9 184,5 2,0 0,30 0,7 1,2 4,51 4,41 1,46 1,45 

10 183,6 183,83 183,6 183,8 2,0 0,30 0,7 1,2 3,84 4,67 1,39 1,49 

30 183,6 183,79 183,4 183,6 2,0 0,30 0,6 0,8 2,97 2,03 1,28 1,23 
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It is remined that the recommendation to compute σH is to adopt the overall value, i.e. in this case, 1,67. 

These results show good consistency between computed results and input results. In most cases uncertainties on 
computed results is better than input ones. As a matter of fact, computed ones are based on a significantly larger 
data. 

Output results on scales that are not input scales: 

A comparison between output parameters was performed, which results are provided in Table 16 here after. 

Table 16. Output parameters for 2020 Vickers tests on low hardness metal. 

 Xpt  uXpt  
σpt  σrpt  

Scale Polyn. Nix Li Polyn. Nix Li 

0,01 197,8 247,0 203,4 4,8 15,0 7,8 19,1 2,33 

0,5 185,6 185,0 185,8 0,9 0,4 1,2 7,70 1,74 

20 184,1 183,8 183,4 2,0 0,3 0,6 3,26 1,32 

100 183,6 183,8 183,2 2,0 0,5 0,6 2,25 1,17 

This comparison shows that polynomial model should be preferred for low load scales. This confirms the statement 
of § 3.3.2. For high load scales, Li and Ni models seem to provide better approximations, even if the polynomial 
model provides quite acceptable results as well. 

5.3 Evaluation of these recommendations using the results of the years 2017 to 2023 

These recommendations were applied to the totality of the available results of the years 2017 to 2023. Results of 
these evaluations are displayed in Table 17. 

Table 17. Evaluation of the recommended procedures with the results of the years 2017 to 2023. 

Legend of the columns: 

 Product: SM is metal in the range of 150-250 HV, HM is metal in the range of 550-700 HV; 
 Hardness: HV is Vickers hardness, HBW is Brinell hardness; 
 Nb of input scales: Number of input scales; 
 Nb of input values: Number of input test results; 
 Option for Xpt: Option that was used to determine Xpt, x² = polynomial, x = straight line, Nix = Nix model, Li = Li model, Cst = constant; 
 Option for σpt and option for σrpt: options that were used to determine σpt and for σrpt, x = straight line, Cst = constant; 
 m(Δzi) and s(Δzi): respectively mean value and standard deviation of differences between z scores (concerning bias) computed from 

initial calculations on input scales and computed from output parameters; 
 m(Δzri) and s(Δzri): respectively mean value and standard deviation of differences between zr scores (concerning repeatability) 

computed from initial calculations on input scales and computed from output parameters; 
 1: percentage of participants that got a more severe (rank difference = 1) with output parameters than with input parameters 

(example: zinput = “Warning” while zoutput = “Action”). The number provides the extent of the difference (for example “2” when zinput 
= “No alert” while zoutput = “Action”). In the same way, in columns “-1” and “-2”, percentage of participants that got a less severe 
with output parameters than with input parameters. 
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2023 HM HV 3 96 x a.10b 0,01 0,15 0,0 1,0 95,8 3,1 0,0 84 a.10b 0,02 0,25 0,0 6,0 85,7 8,3 0,0 

2023 HM HBW 4 39 x Cst 0,00 0,25 0,0 0,0 97,4 2,6 0,0 36 a.10b 0,03 0,26 0,0 5,6 91,7 2,8 0,0 

2022 SM HV 6 141 x² a.10b 0,11 0,70 0,0 2,8 94,3 2,8 0,0 135 a.10b 0,03 0,29 0,0 4,4 91,9 3,0 0,7 

2022 SM HBW 4 65 Nix Cst -0,02 0,40 0,0 1,5 96,9 1,5 0,0 65 a.10b -0,01 0,18 0,0 3,1 93,8 3,1 0,0 

2022 HM HV 3 80 Nix Cst 0,00 0,13 0,0 0,0 100,0 0,0 0,0 71 a.10b -0,01 0,24 0,0 1,4 95,8 2,8 0,0 

2022 HM HBW 3 32 x a.10b 0,11 0,50 0,0 0,0 96,9 3,1 0,0 27 Cst -0,18 0,53 0,0 7,4 92,6 0,0 0,0 

2021 SM HV 6 223 x² a.10b 0,01 0,12 0,0 0,4 99,6 0,0 0,0 202 a.10b -0,01 0,45 0,0 2,0 93,1 4,5 0,5 

2021 SM HBW 4 90 x² a.10b 0,09 0,30 0,0 4,4 93,3 2,2 0,0 82 Cst 0,01 0,29 0,0 1,2 92,7 6,1 0,0 

2021 HM HV 3 47 x a.10b 0,01 0,20 0,0 2,1 97,9 0,0 0,0 47 Cst 0,18 0,30 0,0 0,0 91,5 8,5 0,0 

2021 HM HBW 1 14 Cst Cst 0,19 0,24 0,0 14,3 85,7 0,0 0,0 14 Cst 0,02 0,02 0,0 0,0 100,0 0,0 0,0 

2020 SM HV 6 143 x² a.10b 0,02 0,20 0,0 0,7 98,6 0,7 0,0 139 a.10b 0,01 0,16 0,0 0,0 97,8 2,2 0,0 

2020 SM HBW 4 33 Cst Cst -0,09 0,44 0,0 0,0 97,0 3,0 0,0 30 Cst 0,13 0,18 0,0 0,0 93,3 6,7 0,0 

2020 HM HV 3 45 x a.10b 0,00 0,23 0,0 2,2 95,6 2,2 0,0 43 Cst -0,08 0,13 0,0 9,3 90,7 0,0 0,0 

2020 HM HBW 1 10 Cst Cst 0,12 0,41 0,0 10,0 90,0 0,0 0,0 9 Cst -0,23 0,18 0,0 11,1 88,9 0,0 0,0 

2019 SM HV 6 98 x² a.10b 0,00 0,12 0,0 0,0 100,0 0,0 0,0 93 a.10b 0,00 0,06 0,0 0,0 96,8 3,2 0,0 

2019 SM HBW 4 41 x a.10b 0,08 0,39 0,0 2,4 95,1 2,4 0,0 38 a.10b 0,08 0,27 0,0 0,0 89,5 10,5 0,0 

2019 HM HV 3 65 x Cst 0,91 2,32 0,0 6,2 93,8 0,0 0,0 57 a.10b 0,00 0,00 0,0 0,0 100,0 0,0 0,0 

2019 HM HBW 2 25 Cst Cst -0,09 0,36 0,0 0,0 100,0 0,0 0,0 25 Cst 0,15 0,52 0,0 4,0 76,0 8,0 12,0 

2018 SM HV 6 96 x a.10b 0,01 0,17 0,0 1,0 99,0 0,0 0,0 95 a.10b 0,01 0,29 0,0 1,1 92,6 6,3 0,0 

2018 SM HBW 3 38 Cst Cst 0,06 0,38 0,0 0,0 97,4 2,6 0,0 35 a.10b -0,23 1,39 0,0 2,9 97,1 0,0 0,0 

2018 HM HV 3 79 x a.10b 0,00 0,02 0,0 0,0 98,7 1,3 0,0 74 a.10b 0,00 0,01 0,0 0,0 100,0 0,0 0,0 

2018 HM HBW 2 24 Cst Cst -0,01 0,42 0,0 4,2 91,7 4,2 0,0 19 Cst -0,05 0,43 0,0 26,3 68,4 5,3 0,0 

2017 SM HV 4 30 x Cst -0,05 0,60 0,0 3,3 96,7 0,0 0,0 23 Cst -0,43 1,88 0,0 4,3 91,3 0,0 4,3 

2017 SM HBW 2 8 Cst Cst -0,10 0,52 0,0 0,0 100,0 0,0 0,0 7 Cst -0,02 0,30 0,0 0,0 100,0 0,0 0,0 

2017 HM HV 3 36 Cst a.10b -0,06 0,34 0,0 0,0 97,2 2,8 0,0 35 Cst 0,10 0,31 0,0 5,7 88,6 5,7 0,0 

2017 HM HBW 2 14 Cst Cst -0,29 0,78 0,0 0,0 92,9 7,1 0,0 14 Cst -0,11 0,36 14,3 0,0 78,6 7,1 0,0 

These results show that the differences in scoring of participants are quite low. In most cases, differences in alerts 
are due to scores close to the limits (example 1,95 and 2,05 close to each other but separated by the limit = 2). In a 
very small number of cases, a major difference occurs (i.e. “No alert” and “Action signal”). This is encountered in 2 
types of situations: 

1. When many input scales are present with many input results (example: 2021-SM-HV). In those cases, the 
differences always are in the “+” direction. That can let us suppose that output parameters are more 
efficient than the input ones, and that output results are more reliable than input ones; 
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2. When few input scales are present, what lead the choice to “constants” for much or all parameters, leading 
to a lower efficiency of output parameters than input ones. In those case, the statistical officer should 
decide not to use output results for the assessment of participants. 

No formal evaluation of the relevance of the models of § 2.2 could be performed, because the “true” values cannot 
be known, but the very good correlation between output parameters determined by using the different proposed 
models when an enough size of input data is available tends to prove that they are relevant for performing PT. 

6 Conclusions  

This study showed that it is possible to assess hardness test results of a given scale when an enough amount of test 
results is available for adjacent scales. To achieve this: 

 5 different methods (i.e. HD=a.log(F)²+b.log(F)+c, HD=a.log(F)+b, HD=a/F+b, HD=a/√F+b, HD=a) can be used 
to determine the assigned value for a given F scale; 

 2 different methods (i.e. HD=a.10b.F, HD=a) can be used to determine the proficiency standard deviation, 
the repeatability standard deviation and the uncertainty on the assigned value for a given F scale. 

The person responsible for the statistical treatment shall choose the best options, that depend on the ILC conditions 
(i.e. the number of available input scales, the overall number of test results and how the input results fit with what 
is expected for relationship between measured hardness and load). This study provides a recommended procedure 
to deal with the options and proposes parameters to check the adequacy of each of the options to help the choice 
of the most adapted one. 

An assessment of the results obtained with this procedure on CompaLab ILC results obtained during the 2017-2023 
years was performed, leading to very small differences in the scoring of participants for available scales. When the 
size of the input data is large, output scorings are likely to be more efficient than usual ones.  

For Brinell scales, most of available input test results are from the HBW 2,5/187,5 scale, but a lower amount of test 
results is usually available for HBW 1/30, HBW 5/750 and HBW 10/3000 scales. The proposed extrapolating 
procedure is likely to help the assessment of these other scales. 

For Vickers scales, many test results are usually available for HV5, HV10 and HV30, and HV0,1 HV0,3 and HV1 on 
low hardness metals. The proposed extrapolating procedure is likely to help the assessment of other scales ranging 
from HV0,01 to HV100. 
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Annex: 
Detailed test results that were obtained for this study 

Table A1: Lower and upper limits of the IC95% of sH/σH  
for Np participants, 3 samples per participant, 2 test results per sample (enlargement coefficient for uncertainty: k = 2) 

Np=63 

σH/σr Lower limit Upper limit 

2 0,821±0,006 1,103±0,006 

1,6 0,806±0,006 1,100±0,006 

1,25 0,766±0,008 1,102±0,008 

1 0,705±0,010 1,101±0,008 

0,8 0,593±0,016 1,110±0,010 

0,7 0,434±0,026 1,115±0,012 

0,6 0,221±0,032 1,127±0,012 

0,5 0,019±0,012 1,146±0,018 

0,4 0,000±0,000 1,184±0,024 

0,32 0,000±0,000 1,247±0,034 

0,25 0,000±0,000 1,299±0,052 

0,2 0,000±0,000 1,418±0,078 

0,16 0,000±0,000 1,593±0,096 

0,125 0,000±0,000 1,698±0,146 

0,1 0,000±0,000 2,041±0,182 

0,08 0,000±0,000 2,423±0,218 

Np=50 

σH/σr Lower limit Upper limit 

2 0,806±0,006 1,120±0,008 

1,6 0,788±0,008 1,116±0,006 

1,25 0,735±0,008 1,130±0,010 

1 0,659±0,012 1,129±0,008 

0,8 0,516±0,022 1,156±0,010 

0,7 0,340±0,030 1,157±0,012 

0,6 0,101±0,026 1,191±0,014 

0,5 0,001±0,002 1,193±0,016 

0,4 0,000±0,000 1,267±0,022 

0,32 0,000±0,000 1,302±0,030 

0,25 0,000±0,000 1,447±0,042 

0,2 0,000±0,000 1,643±0,074 

0,16 0,000±0,000 1,813±0,090 

0,125 0,000±0,000 2,184±0,124 

0,1 0,000±0,000 2,506±0,156 

0,08 0,000±0,000 3,255±0,202 

Np=40 

σH/σr Lower limit Upper limit 

2 0,783±0,008 1,137±0,006 

1,6 0,763±0,008 1,141±0,006 

1,25 0,717±0,010 1,147±0,006 

1 0,631±0,010 1,162±0,010 

0,8 0,474±0,022 1,180±0,012 

0,7 0,261±0,038 1,192±0,014 

0,6 0,051±0,022 1,215±0,016 

0,5 0,000±0,000 1,252±0,018 

0,4 0,000±0,000 1,336±0,022 

0,32 0,000±0,000 1,434±0,034 

0,25 0,000±0,000 1,621±0,046 

0,2 0,000±0,000 1,786±0,064 

0,16 0,000±0,000 2,154±0,074 

0,125 0,000±0,000 2,513±0,112 

0,1 0,000±0,000 3,181±0,134 

0,08 0,000±0,000 3,509±0,204 

Np=32 

σH/σr Lower limit Upper limit 

2 0,761±0,006 1,176±0,008 

1,6 0,734±0,008 1,166±0,008 

1,25 0,677±0,010 1,184±0,008 

1 0,593±0,012 1,190±0,010 

0,8 0,387±0,026 1,223±0,010 

0,7 0,180±0,032 1,248±0,010 

0,6 0,009±0,008 1,274±0,016 

0,5 0,000±0,000 1,316±0,014 

0,4 0,000±0,000 1,417±0,024 

0,32 0,000±0,000 1,554±0,032 

0,25 0,000±0,000 1,766±0,044 

0,2 0,000±0,000 2,062±0,054 

0,16 0,000±0,000 2,418±0,074 

0,125 0,000±0,000 2,952±0,098 

0,1 0,000±0,000 3,571±0,128 

0,08 0,000±0,000 4,379±0,150 

Np=25 

σH/σr Lower limit Upper limit 

2 0,727±0,008 1,193±0,008 

1,6 0,700±0,008 1,197±0,006 

1,25 0,634±0,008 1,222±0,010 

1 0,528±0,016 1,241±0,010 

0,8 0,272±0,030 1,275±0,010 

0,7 0,045±0,018 1,290±0,012 

0,6 0,001±0,002 1,331±0,014 

0,5 0,000±0,000 1,404±0,014 

0,4 0,000±0,000 1,512±0,026 

0,32 0,000±0,000 1,693±0,028 

0,25 0,000±0,000 1,965±0,038 

0,2 0,000±0,000 2,295±0,050 

0,16 0,000±0,000 2,710±0,066 

0,125 0,000±0,000 3,329±0,078 

0,1 0,000±0,000 3,949±0,118 

0,08 0,000±0,000 5,167±0,128 

Np=20 

σH/σr Lower limit Upper limit 

2 0,702±0,008 1,217±0,008 

1,6 0,667±0,008 1,230±0,008 

1,25 0,598±0,010 1,246±0,008 

1 0,447±0,018 1,278±0,010 

0,8 0,121±0,030 1,299±0,010 

0,7 0,013±0,010 1,347±0,012 

0,6 0,000±0,000 1,392±0,016 

0,5 0,000±0,000 1,481±0,018 

0,4 0,000±0,000 1,611±0,024 

0,32 0,000±0,000 1,796±0,030 

0,25 0,000±0,000 2,111±0,038 

0,2 0,000±0,000 2,510±0,044 

0,16 0,000±0,000 2,953±0,064 

0,125 0,000±0,000 3,751±0,080 

0,1 0,000±0,000 4,541±0,106 

0,08 0,000±0,000 5,630±0,128 



 Interpolation of VA according to loading charges 04/2024 - Page 52/52 
 
 

 

CompaLab – 16, av. du Général de Gaulle, 93110 Rosny-sous-Bois - +33 9 83 05 93 50 – ilc@compalab.org – www.compalab.org  
SIRET : 799855721.00012 – RCS : 799855721 RCS BOBIGNY - APE/NACE : 7320Z – TVA : FR 90 799855721 

Np=16 

σH/σr Lower limit Upper limit 

2 0,667±0,006 1,261±0,008 

1,6 0,627±0,008 1,270±0,008 

1,25 0,546±0,012 1,290±0,010 

1 0,380±0,020 1,314±0,010 

0,8 0,034±0,014 1,352±0,010 

0,7 0,000±0,000 1,400±0,012 

0,6 0,000±0,000 1,466±0,016 

0,5 0,000±0,000 1,560±0,016 

0,4 0,000±0,000 1,724±0,020 

0,32 0,000±0,000 1,934±0,026 

0,25 0,000±0,000 2,259±0,038 

0,2 0,000±0,000 2,728±0,044 

0,16 0,000±0,000 3,284±0,054 

0,125 0,000±0,000 4,074±0,074 

0,1 0,000±0,000 5,010±0,082 

0,08 0,000±0,000 6,180±0,120 

Np=13 

σH/σr Lower limit Upper limit 

2 0,637±0,006 1,291±0,008 

1,6 0,582±0,010 1,303±0,008 

1,25 0,500±0,012 1,337±0,010 

1 0,264±0,026 1,359±0,010 

0,8 0,006±0,008 1,418±0,012 

0,7 0,000±0,000 1,454±0,012 

0,6 0,000±0,000 1,519±0,014 

0,5 0,000±0,000 1,640±0,014 

0,4 0,000±0,000 1,790±0,020 

0,32 0,000±0,000 2,075±0,028 

0,25 0,000±0,000 2,455±0,034 

0,2 0,000±0,000 2,914±0,046 

0,16 0,000±0,000 3,558±0,060 

0,125 0,000±0,000 4,366±0,076 

0,1 0,000±0,000 5,463±0,094 

0,08 0,000±0,000 6,789±0,116 

 

 

 

 

Np=10 

σH/σr Lower limit Upper limit 

2 0,583±0,008 1,335±0,006 

1,6 0,530±0,008 1,355±0,008 

1,25 0,391±0,016 1,387±0,010 

1 0,106±0,024 1,426±0,010 

0,8 0,000±0,000 1,488±0,012 

0,7 0,000±0,000 1,535±0,012 

0,6 0,000±0,000 1,610±0,016 

0,5 0,000±0,000 1,740±0,018 

0,4 0,000±0,000 1,950±0,020 

0,32 0,000±0,000 2,248±0,030 

0,25 0,000±0,000 2,669±0,034 

0,2 0,000±0,000 3,224±0,046 

0,16 0,000±0,000 3,909±0,066 

0,125 0,000±0,000 4,919±0,072 

0,1 0,000±0,000 6,016±0,084 

0,08 0,000±0,000 7,379±0,108 

Np=8 

σH/σr Lower limit Upper limit 

2 0,534±0,008 1,387±0,008 

1,6 0,462±0,010 1,414±0,010 

1,25 0,294±0,018 1,431±0,010 

1 0,029±0,014 1,479±0,010 

0,8 0,000±0,000 1,559±0,012 

0,7 0,000±0,000 1,606±0,014 

0,6 0,000±0,000 1,708±0,016 

0,5 0,000±0,000 1,826±0,018 

0,4 0,000±0,000 2,069±0,024 

0,32 0,000±0,000 2,391±0,024 

0,25 0,000±0,000 2,884±0,036 

0,2 0,000±0,000 3,537±0,044 

0,16 0,000±0,000 4,202±0,054 

0,125 0,000±0,000 5,274±0,066 

0,1 0,000±0,000 6,516±0,090 

0,08 0,000±0,000 8,131±0,096 

 

 

 

 

Np=6 

σH/σr Lower limit Upper limit 

2 0,463±0,010 1,452±0,008 

1,6 0,364±0,012 1,478±0,008 

1,25 0,129±0,024 1,503±0,010 

1 0,000±0,000 1,565±0,010 

0,8 0,000±0,000 1,657±0,010 

0,7 0,000±0,000 1,720±0,012 

0,6 0,000±0,000 1,818±0,014 

0,5 0,000±0,000 1,985±0,018 

0,4 0,000±0,000 2,241±0,022 

0,32 0,000±0,000 2,606±0,028 

0,25 0,000±0,000 3,152±0,026 

0,2 0,000±0,000 3,812±0,042 

0,16 0,000±0,000 4,598±0,042 

0,125 0,000±0,000 5,888±0,066 

0,1 0,000±0,000 7,218±0,074 

0,08 0,000±0,000 9,019±0,096 

 

 


