Publicaciones tecnicales por los CIL

Riesgos beta en los ensayos de aptitud

Resumen:

Se aplica el método de Monte Carlo a los esquemas de EA (ensayos de aptitud) para investigar su eficacia. Se calculan las probabilidades de que los valores z computados sean superiores a 3 mientras que el valor verdadero es inferior a 2 y de que los valores z computados sean inferiores a 2 mientras que los valores verdaderos son superiores a 3 para una serie de situaciones: número de participantes de 5 a 30, diversas proporciones de repetibilidad sobre reproducibilidad y número de resultados de pruebas por participante, introducción o no de valores atípicos con z de 3,5 a 10. Para cada situación se discuten las probabilidades de no detectar valores atípicos verdaderos y de desencadenar falsas alertas. Para cada situación, se analizan las probabilidades de no detectar verdaderos valores atípicos y de desencadenar falsas alertas. Se proponen orientaciones y claves para comprobar y mejorar la eficacia de los programas de EA reales.

Resumen de conclusiones:

  1. La relación λ=σr/(σL×Nr) es de principal importancia para controlar la eficiencia de un esquema de EA, incluso más que el número de participantes. Los proveedores de EA deben entonces cuidar Nr, número de resultados de pruebas por participante que solicitan;
  2. Incluso en condiciones adversas, el riesgo α es siempre muy bajo (menos del 0,7%);
  3. Los algoritmos robustos mejoran la eficiencia del programa de EA (es decir, el riesgo β) con un ligero gasto en el riesgo α (que siempre sigue siendo muy bajo). Esto se debe a una estimación significativamente mejor de la desviación típica de referencia cuando hay un valor atípico entre los participantes y cuando se utilizan estos algoritmos robustos;
  4. Un número de 6 participantes es suficientemente grande para detectar a un participante fuertemente atípico siempre que se den buenas condiciones de EA (es decir, un valor bajo de λ);
  5. El TP con un número bajo de participantes es (casi) siempre mejor que ningún EA.

Las normas de referencia ISO 5725-2 e ISO 13528 recomiendan no organizar una CIL con menos de 12 participantes. Esto tiene sentido para la norma ISO 5725-2, cuyo objetivo es determinar el rendimiento de un método de ensayo. Tiene menos sentido para la norma ISO 13528, cuyo objetivo es comprobar el rendimiento de un laboratorio. Evidentemente, cuando no se organiza ningún Ensayo de Aptitud, el riesgo β es del 100%: ¡cualquier laboratorio que tenga un problema nunca podrá darse cuenta en absoluto! En consecuencia, para los métodos de ensayo que son realizados por un pequeño número de laboratorios, es obviamente mejor organizar PT con 6 participantes que nada. En esos casos, el proveedor de EA debe tener especial cuidado con el número de resultados de pruebas por participante que solicita, para garantizar un valor λ adecuado y, en consecuencia, asegurar una eficiencia lo mejor posible.

Véase el texto completo en inglés: Beta risks in proficiency testing

Véase el texto completo en francés: Risques béta lors d'essais d'aptitude

 

Rankits apropiados para gráficos de probabilidad normal y gráficos de probabilidad de desviación estándar

Los gráficos de probabilidad normal suelen utilizarse para comprobar si una distribución puede considerarse gaussiana, visualizar si algunas cifras pueden ser valores atípicos y, mediante una regresión lineal, estimar su valor medio y su desviación típica. Del mismo modo, los "gráficos de probabilidad SD", basados en la distribución de las estimaciones de la desviación típica, podrían ser muy útiles para alcanzar objetivos similares: comprobar si se puede aceptar o no una hipótesis de homocedasticidad, visualizar las estimaciones que probablemente sean atípicas y estimar la verdadera desviación típica subyacente. En la práctica, es necesario un cambio de variable para cambiar el rango de cada valor en una probabilidad acumulada correspondiente y una transformación gaussiana inversa para obtener un "rankit" que se utilizará como ordenadas para estos gráficos. Para determinar las probabilidades acumuladas adecuadas se suelen utilizar ecuaciones en forma de (i-a)/(N+1-2a) con 0 ≤ a ≤ 1. De hecho, al menos para valores pequeños de N, la elección del valor de "a" tiene un impacto importante en las conclusiones que se extraigan posteriormente. En este documento:

  • Discute los fundamentos de estas ecuaciones;
  • Evalúa su adecuación para una serie de situaciones y tipos de leyes de distribución;
  • Propone ecuaciones para determinar los valores de "a" en función de N, que proporcionan mejores rangos que los utilizados habitualmente y permiten estimar valores medios y/o desviaciones típicas sin ningún sesgo para una serie de situaciones;
  • Propone una forma precisa de determinar curvas envolventes de confianza para diagramas de probabilidad normal y diagramas de probabilidad de cualquier distribución cuya función acumulativa sea conocida.

Véase el texto completo en inglés: Appropriate rankits for normal probability plots

Véase el texto completo en francés: Rankits appropriés pour tracés de probabilités cumulées